Suppr超能文献

一种基于介孔二氧化硅纳米球的载体系统,其具有化学可去除的硫化镉纳米颗粒帽,用于神经递质和药物分子的刺激响应控制释放。

A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules.

作者信息

Lai Cheng-Yu, Trewyn Brian G, Jeftinija Dusan M, Jeftinija Ksenija, Xu Shu, Jeftinija Srdija, Lin Victor S-Y

机构信息

Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA.

出版信息

J Am Chem Soc. 2003 Apr 16;125(15):4451-9. doi: 10.1021/ja028650l.

Abstract

An MCM-41 type mesoporous silica nanosphere-based (MSN) controlled-release delivery system has been synthesized and characterized using surface-derivatized cadmium sulfide (CdS) nanocrystals as chemically removable caps to encapsulate several pharmaceutical drug molecules and neurotransmitters inside the organically functionalized MSN mesoporous framework. We studied the stimuli-responsive release profiles of vancomycin- and adenosine triphosphate (ATP)-loaded MSN delivery systems by using disulfide bond-reducing molecules, such as dithiothreitol (DTT) and mercaptoethanol (ME), as release triggers. The biocompatibility and delivery efficiency of the MSN system with neuroglial cells (astrocytes) in vitro were demonstrated. In contrast to many current delivery systems, the molecules of interest were encapsulated inside the porous framework of the MSN not by adsorption or sol-gel types of entrapment but by capping the openings of the mesoporous channels with size-defined CdS nanoparticles to physically block the drugs/neurotransmitters of certain sizes from leaching out. We envision that this new MSN system could play a significant role in developing new generations of site-selective, controlled-release delivery nanodevices.

摘要

一种基于MCM - 41型介孔二氧化硅纳米球(MSN)的控释递送系统已被合成并表征,该系统使用表面衍生化的硫化镉(CdS)纳米晶体作为化学可去除的盖帽,将几种药物分子和神经递质封装在有机功能化的MSN介孔框架内。我们通过使用二硫键还原分子,如二硫苏糖醇(DTT)和巯基乙醇(ME)作为释放触发剂,研究了负载万古霉素和三磷酸腺苷(ATP)的MSN递送系统的刺激响应释放曲线。证明了MSN系统在体外与神经胶质细胞(星形胶质细胞)的生物相容性和递送效率。与许多当前的递送系统不同,感兴趣的分子不是通过吸附或溶胶 - 凝胶类型的包封封装在MSN的多孔框架内,而是通过用尺寸确定的CdS纳米颗粒覆盖介孔通道的开口,以物理方式阻止某些尺寸的药物/神经递质浸出。我们设想这种新的MSN系统在开发新一代位点选择性、控释递送纳米器件方面可以发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验