Sanbonmatsu K Y, Joseph S
Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
J Mol Biol. 2003 Apr 18;328(1):33-47. doi: 10.1016/s0022-2836(03)00236-5.
The ribosome must discriminate between correct and incorrect tRNAs with sufficient speed and accuracy to sustain an adequate rate of cell growth. Here, we report the results of explicit solvent molecular dynamics simulations, which address the mechanism of discrimination by the ribosome. The universally conserved 16S rRNA base A1493 and the kink in mRNA between A and P sites amplify differences in stability between cognate and near-cognate codon-anticodon pairs. Destabilization by the mRNA kink also provides a geometric explanation for the higher error rates observed for mismatches in the first codon position relative to mismatches in the second codon position. For more stable near-cognates, the repositioning of the universally conserved bases A1492 and G530 results in increased solvent exposure and an uncompensated loss of hydrogen bonds, preventing correct codon-anticodon-ribosome interactions from forming.
核糖体必须以足够的速度和准确性区分正确和错误的转运RNA(tRNA),以维持适当的细胞生长速率。在此,我们报告了显式溶剂分子动力学模拟的结果,该模拟探讨了核糖体的识别机制。普遍保守的16S核糖体RNA(rRNA)碱基A1493以及A位点和P位点之间mRNA的扭结放大了同源和近同源密码子-反密码子对之间稳定性的差异。mRNA扭结导致的不稳定也为相对于第二个密码子位置的错配,第一个密码子位置错配所观察到的更高错误率提供了几何学解释。对于更稳定的近同源物,普遍保守的碱基A1492和G530的重新定位导致溶剂暴露增加和氢键的无补偿损失,从而阻止了正确的密码子-反密码子-核糖体相互作用的形成。