Suppr超能文献

模拟填充双嵌段共聚物的形态和力学性能。

Simulating the morphology and mechanical properties of filled diblock copolymers.

作者信息

Buxton Gavin A, Balazs Anna C

机构信息

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031802. doi: 10.1103/PhysRevE.67.031802. Epub 2003 Mar 14.

Abstract

We couple a morphological study of a mixture of diblock copolymers and spherical nanoparticles with a micromechanical simulation to determine how the spatial distribution of the particles affects the mechanical behavior of the composite. The morphological studies are conducted through a hybrid technique, which combines a Cahn-Hilliard (CH) theory for the diblocks and a Brownian dynamics (BD) for the particles. Through these "CH-BD" calculations, we obtain the late-stage morphology of the diblock-particle mixtures. The output of this CH-BD model serves as the input to the lattice spring model (LSM), which consists of a three-dimensional network of springs. In particular, the location of the different phases is mapped onto the LSM lattice and the appropriate force constants are assigned to the LSM bonds. A stress is applied to the LSM lattice, and we calculate the local strain fields and overall elastic response of the material. We find that the confinement of nanoparticles within a given domain of a bicontinous diblock mesophase causes the particles to percolate and form essentially a rigid backbone throughout the material. This continuous distribution of fillers significantly increases the reinforcement efficiency of the nanoparticles and dramatically increases the Young's modulus of the material. By integrating the morphological and mechanical models, we can isolate how modifications in physical characteristics of the particles and diblocks affect both the structure of the mixture and the macroscopic behavior of the composite. Thus, we can establish how choices made in the components affect the ultimate performance of the material.

摘要

我们将双嵌段共聚物与球形纳米颗粒混合物的形态学研究与微观力学模拟相结合,以确定颗粒的空间分布如何影响复合材料的力学行为。形态学研究通过一种混合技术进行,该技术将双嵌段的Cahn-Hilliard(CH)理论与颗粒的布朗动力学(BD)相结合。通过这些“CH-BD”计算,我们获得了双嵌段-颗粒混合物的后期形态。这个CH-BD模型的输出作为晶格弹簧模型(LSM)的输入,晶格弹簧模型由三维弹簧网络组成。具体而言,将不同相的位置映射到LSM晶格上,并为LSM键分配适当的力常数。对LSM晶格施加应力,然后我们计算材料的局部应变场和整体弹性响应。我们发现,纳米颗粒在双连续双嵌段中间相的给定区域内的受限导致颗粒渗流并在整个材料中形成基本上刚性的骨架。填料的这种连续分布显著提高了纳米颗粒的增强效率,并显著提高了材料的杨氏模量。通过整合形态学和力学模型,我们可以确定颗粒和双嵌段物理特性的改变如何影响混合物的结构和复合材料的宏观行为。因此,我们可以确定在组分中做出的选择如何影响材料的最终性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验