Suppr超能文献

采用胶体晶体增强设计的光固化牙科复合材料。

Light curable dental composites designed with colloidal crystal reinforcement.

作者信息

Wan Quan, Sheffield Joel, McCool John, Baran George

机构信息

Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 North 12th Street, Philadelphia, PA 19122, United States.

出版信息

Dent Mater. 2008 Dec;24(12):1694-701. doi: 10.1016/j.dental.2008.04.003. Epub 2008 May 21.

Abstract

OBJECTIVES

Methods to prepare dental composites with a periodic filler arrangement were developed following a strategy of colloidal crystallization. The aims of this study were to determine the influence of suspension medium, silane treatment and amine additive on colloidal particle redispersion and subsequent ordering, and to evaluate the effect of filler ordering on mechanical properties of composites.

METHODS

Dry monodisperse silica particles (spherical, approximately 500-nm diameter) were redispersed in selected solvents and monomers (e.g. triethyleneglycol dimethacrylate, TEGDMA) to form sediments or dispersions with ordered particle arrangements. Ordering was evaluated by microscopy and mechanical properties of the composites were measured using compression tests (n=6).

RESULTS

A face-centered cubic packed structure could form in both the sediment from silica dispersions in polar solvents and stable dispersions in TEGDMA. Dimethylaminoethyl methacrylate (DMAEMA) was found to disrupt an ordered structure when non-silanized silica particles were used. Silanization with 3-methacryloxypropyl trimethoxysilane (MPS) promoted filler ordering. Standard compression tests on composites containing 60wt% silica in TEGDMA with or without DMAEMA indicated that DMAEMA had a clearly significant effect (p<0.05) on failure strain, compressive strength, and toughness, and a marginally significant effect on modulus (p=0.12).

SIGNIFICANCE

Significant increases in compressive strength (16%), failure strain (71%), and toughness (135%) were observed for composites with ordered filler compared to non-ordered composites.

摘要

目的

按照胶体结晶策略开发了制备具有周期性填料排列的牙科复合材料的方法。本研究的目的是确定悬浮介质、硅烷处理和胺添加剂对胶体颗粒再分散及随后有序排列的影响,并评估填料有序排列对复合材料力学性能的影响。

方法

将干燥的单分散二氧化硅颗粒(球形,直径约500nm)重新分散在选定的溶剂和单体(如三乙二醇二甲基丙烯酸酯,TEGDMA)中,以形成具有有序颗粒排列的沉积物或分散体。通过显微镜评估有序排列,并使用压缩试验测量复合材料的力学性能(n = 6)。

结果

在极性溶剂中的二氧化硅分散体形成的沉积物以及TEGDMA中的稳定分散体中均可形成面心立方堆积结构。当使用未硅烷化的二氧化硅颗粒时,发现甲基丙烯酸二甲氨基乙酯(DMAEMA)会破坏有序结构。用3-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)进行硅烷化促进了填料的有序排列。对在TEGDMA中含有60wt%二氧化硅且有或没有DMAEMA的复合材料进行的标准压缩试验表明,DMAEMA对破坏应变、抗压强度和韧性有明显显著影响(p<0.05),对模量有轻微显著影响(p = 0.12)。

意义

与无序复合材料相比,有序填料的复合材料的抗压强度(16%)、破坏应变(71%)和韧性(135%)显著增加。

相似文献

1
Light curable dental composites designed with colloidal crystal reinforcement.
Dent Mater. 2008 Dec;24(12):1694-701. doi: 10.1016/j.dental.2008.04.003. Epub 2008 May 21.
2
Whisker-reinforced dental core buildup composites: effect of filler level on mechanical properties.
J Biomed Mater Res. 2000 Dec 15;52(4):812-8. doi: 10.1002/1097-4636(20001215)52:4<812::aid-jbm26>3.0.co;2-y.
3
Synthesis and study of properties of dental resin composites with different nanosilica particles size.
Dent Mater. 2011 Aug;27(8):825-35. doi: 10.1016/j.dental.2011.04.008. Epub 2011 May 17.
4
Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites.
Dent Mater. 2009 Nov;25(11):1315-24. doi: 10.1016/j.dental.2009.03.016. Epub 2009 Jul 5.
7
Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite.
Dent Mater. 2014 Dec;30(12):1358-68. doi: 10.1016/j.dental.2014.10.003.
8
Nano-porous thermally sintered nano silica as novel fillers for dental composites.
Dent Mater. 2012 Feb;28(2):133-45. doi: 10.1016/j.dental.2011.10.015. Epub 2011 Dec 3.
9
The effect of a leucite-containing ceramic filler on the abrasive wear of dental composites.
Dent Mater. 2007 Sep;23(9):1181-7. doi: 10.1016/j.dental.2007.03.006. Epub 2007 May 15.
10
Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.
Dent Mater. 2008 Feb;24(2):235-43. doi: 10.1016/j.dental.2007.05.002. Epub 2007 Jun 18.

引用本文的文献

1
Evaluation of chromatic changes of a nanocomposite resin using the new whitness index.
Clujul Med. 2018;91(2):222-228. doi: 10.15386/cjmed-893. Epub 2018 Apr 25.
2
A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine.
Int J Oral Sci. 2015 Jun 26;7(2):103-9. doi: 10.1038/ijos.2014.77.
3
Protein-repellent and antibacterial dental composite to inhibit biofilms and caries.
J Dent. 2015 Feb;43(2):225-34. doi: 10.1016/j.jdent.2014.11.008. Epub 2014 Dec 3.
5
Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model.
Dent Mater. 2013 Feb;29(2):231-40. doi: 10.1016/j.dental.2012.10.010. Epub 2012 Nov 8.
7
Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles.
J Biomed Mater Res B Appl Biomater. 2012 Jul;100(5):1264-73. doi: 10.1002/jbm.b.32691. Epub 2012 Apr 19.
8
Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine.
Dent Mater. 2012 May;28(5):573-83. doi: 10.1016/j.dental.2012.01.006. Epub 2012 Feb 6.
9
Recent advances and developments in composite dental restorative materials.
J Dent Res. 2011 Apr;90(4):402-16. doi: 10.1177/0022034510381263. Epub 2010 Oct 5.
10
Thermal pretreatment of silica composite filler materials.
J Therm Anal Calorim. 2010 Jan;99(1):237-243. doi: 10.1007/s10973-009-0139-8.

本文引用的文献

1
Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials.
Adv Mater. 2005 Jun 6;17(11):1331-1349. doi: 10.1002/adma.200500167.
2
Rigid biological systems as models for synthetic composites.
Science. 2005 Nov 18;310(5751):1144-7. doi: 10.1126/science.1116994.
4
Self-regulated structures in nanocomposites by directed nanoparticle assembly.
Nano Lett. 2005 Oct;5(10):1878-82. doi: 10.1021/nl051079e.
5
Materials science. Hierarchies in biomineral structures.
Science. 2005 Jul 8;309(5732):253-4. doi: 10.1126/science.1113954.
6
Silane treatment effects on glass/resin interfacial shear strengths.
Dent Mater. 2003 Jul;19(5):441-8. doi: 10.1016/s0109-5641(02)00089-1.
8
Simulating the morphology and mechanical properties of filled diblock copolymers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031802. doi: 10.1103/PhysRevE.67.031802. Epub 2003 Mar 14.
9
Entropically driven formation of hierarchically ordered nanocomposites.
Phys Rev Lett. 2002 Oct 7;89(15):155503. doi: 10.1103/PhysRevLett.89.155503. Epub 2002 Sep 23.
10
Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites.
J Biomed Mater Res. 2001 Dec 5;57(3):384-93. doi: 10.1002/1097-4636(20011205)57:3<384::aid-jbm1181>3.0.co;2-f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验