Solari Hernán G, Natiello Mario A
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031918. doi: 10.1103/PhysRevE.67.031918. Epub 2003 Mar 26.
We introduce an approximation to stochastic population dynamics based on almost independent Poisson processes whose parameters obey a set of coupled ordinary differential equations. The approximation applies to systems that evolve in terms of events such as death, birth, contagion, emission, absorption, etc., and we assume that the event-rates satisfy a generalized mass-action law. The dynamics of the populations is then the result of the projection from the space of events into the space of populations that determine the state of the system (phase space). The properties of the Poisson approximation are studied in detail. Especially, error bounds for the moment generating function and the generating function receive particular attention. The deterministic approximation for the population fractions and the Langevin-type approximation for the fluctuations around the mean value are recovered within the framework of the Poisson approximation as particular limit cases. However, the proposed framework allows to treat other limit cases and general situations with small populations that lie outside the scope of the standard approaches. The Poisson approximation can be viewed as a general (numerical) integration scheme for this family of problems in population dynamics.
我们基于几乎独立的泊松过程引入一种对随机种群动态的近似方法,其参数服从一组耦合的常微分方程。该近似方法适用于依据死亡、出生、传染、发射、吸收等事件演化的系统,并且我们假设事件发生率满足广义质量作用定律。种群动态随后是从事件空间到确定系统状态的种群空间(相空间)的投影结果。详细研究了泊松近似的性质。特别地,矩生成函数和生成函数的误差界受到了特别关注。在泊松近似的框架内,作为特殊极限情况恢复了种群分数的确定性近似和围绕均值波动的朗之万型近似。然而,所提出的框架允许处理标准方法范围之外的其他极限情况和小种群的一般情形。泊松近似可被视为种群动态中这类问题的一种通用(数值)积分方案。