Tonnelier Arnaud
Laboratory of Computational Neuroscience, IC-LCN, EPFL, 1015 Lausanne, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 2):036105. doi: 10.1103/PhysRevE.67.036105. Epub 2003 Mar 13.
This paper investigates traveling wave solutions of the spatially discrete reaction-diffusion systems whose kinetics are modeled by the McKean caricature of the FitzHugh-Nagumo model. In the limit of a weak coupling strength, we construct the traveling wave solutions and obtain the critical coupling constant below which propagation failure occurs. We report the existence of two different pulse traveling waves with different propagation speeds. Analytical results on the wave speed are obtained. Earlier results on propagation in the bistable medium are found as a limiting regime of our analysis.
本文研究了空间离散反应扩散系统的行波解,其动力学由FitzHugh-Nagumo模型的McKean caricature建模。在弱耦合强度的极限情况下,我们构造了行波解,并得到了发生传播失败的临界耦合常数。我们报告了存在两种具有不同传播速度的不同脉冲行波。得到了关于波速的分析结果。在双稳介质中传播的早期结果被发现是我们分析的一个极限情况。