Suppr超能文献

通过利用变构药物结合位点进行GPCR药物发现。

GPCR drug discovery through the exploitation of allosteric drug binding sites.

作者信息

Rees Stephen, Morrow Dwight, Kenakin Terry

机构信息

GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK.

出版信息

Recept Channels. 2002;8(5-6):261-8.

Abstract

G-protein-coupled receptors (GPCRs) represent the most important class of drug targets both in terms of therapeutic benefit and pharmaceutical sales. The majority of current GPCR drugs have been identified in ligand binding assays and interact with the receptor in a competitive manner with the natural ligand. There is increasing evidence that it is possible to identify GPCR agonist and antagonist ligands that do not interact at the natural ligand binding site, rather such compounds interact elsewhere on the receptor to modulate receptor activity. This finding allows the possibility that there may be many as yet uncharacterized drug binding sites within the GPCR that could be exploited for therapeutic intervention. The characterization of such "allosteric" ligand interaction sites, following the identification of molecules capable of interacting at these sites, would be expected to lead to the identification of drug molecules with improved selectivity and efficacy. Such activities may enable the identification of selective ligands at GPCRs for which competitive natural ligand binding screens have been unsuccessful. In this manuscript we review known examples of GPCR allosteric ligands, the functional assay technologies that are being employed to identify further ligands of this type, and the potential benefit that may result from the identification of such ligands.

摘要

G蛋白偶联受体(GPCRs)无论在治疗益处还是药品销售方面,都是最重要的一类药物靶点。目前大多数GPCR药物是在配体结合试验中发现的,并且与受体的相互作用方式是与天然配体竞争。越来越多的证据表明,有可能识别出不在天然配体结合位点相互作用的GPCR激动剂和拮抗剂配体,而是这类化合物在受体的其他部位相互作用以调节受体活性。这一发现使得GPCR内可能存在许多尚未被表征的药物结合位点,可用于治疗干预。在鉴定出能够在这些位点相互作用的分子之后,对这类“变构”配体相互作用位点的表征,有望导致鉴定出具有更高选择性和疗效的药物分子。这样的活性可能使得在竞争性天然配体结合筛选未成功的GPCR上鉴定出选择性配体。在本手稿中,我们综述了GPCR变构配体的已知实例、用于鉴定此类更多配体的功能测定技术,以及鉴定此类配体可能产生的潜在益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验