Tomoo Koji, Shen Xu, Okabe Koumei, Nozoe Yoshiaki, Fukuhara Shoichi, Morino Shigenobu, Sasaki Masahiro, Taniguchi Taizo, Miyagawa Hiroo, Kitamura Kunihiro, Miura Kin-ichiro, Ishida Toshimasa
Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
J Mol Biol. 2003 Apr 25;328(2):365-83. doi: 10.1016/s0022-2836(03)00314-0.
The structural features of human eIF4E were investigated by X-ray crystal analyses of its cap analog (m(7)GTP and m(7)GpppA) complexes and molecular dynamics (MD) simulations of cap-free and cap-bound eIF4Es, as well as the cap-bound Ser209-phosphorylated eIF4E. Crystal structure analyses at 2.0 A resolution revealed that the molecule forms a temple-bell-shaped surface of eight antiparallel beta-structures, three alpha-helices and ten loop structures, where the N-terminal region corresponds to the handle of the bell. This concave backbone provides a scaffold for the mRNA cap-recognition pocket consisting of three receiving parts for the 5'-terminal m(7)G base, the triphosphate, and the second nucleotide. The m(7)G base is sandwiched between the two aromatic side-chains of Trp102 and Trp56. The two (m(7)G)NH-O (Glu103 carboxy group) hydrogen bonds stabilize the stacking interaction. The basic residues of Arg157 and Lys162 and water molecules construct a binding pocket for the triphosphate moiety, where a universal hydrogen-bonding network is formed. The flexible C-terminal loop region unobserved in the m(7)GTP complex was clearly observed in the m(7)GpppA complex, as a result of the fixation of this loop by the interaction with the adenosine moiety, indicating the function of this loop as a receiving pocket for the second nucleotide. On the other hand, MD simulation in an aqueous solution system revealed that the cap-binding pocket, especially its C-terminal loop structure, is flexible in the cap-free eIF4E, and the entrance of the cap-binding pocket becomes narrow, although the depth is relatively unchanged. SDS-PAGE analyses showed that this structural instability is highly related to the fast degradation of cap-free eIF4E, compared with cap-bound or 4E-BP/cap-bound eIF4E, indicating the conferment of structural stability of eIF4E by the binary or ternary complex formation. MD simulation of m(7)GpppA-bound Ser209-phosphorylated eIF4E showed that the size of the cap-binding entrance is dependent on the ionization state in the Ser209 phosphorylation, which is associated with the regulatory function through the switching on/off of eIF4E phosphorylation.
通过对人源真核起始因子4E(eIF4E)的帽类似物(m⁷GTP和m⁷GpppA)复合物进行X射线晶体分析,以及对无帽和结合帽的eIF4E以及结合帽的Ser209磷酸化的eIF4E进行分子动力学(MD)模拟,研究了eIF4E的结构特征。2.0 Å分辨率的晶体结构分析表明,该分子形成了一个由八个反平行β结构、三个α螺旋和十个环结构组成的钟形表面,其中N端区域对应于钟的柄部。这个凹形主链为mRNA帽识别口袋提供了一个支架,该口袋由用于5'-末端m⁷G碱基、三磷酸和第二个核苷酸的三个容纳部分组成。m⁷G碱基夹在Trp102和Trp56的两个芳香族侧链之间。两个(m⁷G)NH - O(Glu103羧基)氢键稳定了堆积相互作用。Arg157和Lys162的碱性残基以及水分子构成了三磷酸部分的结合口袋,在那里形成了一个通用的氢键网络。在m⁷GTP复合物中未观察到的柔性C端环区域,在m⁷GpppA复合物中由于与腺苷部分的相互作用而使该环固定,从而清晰可见,这表明该环作为第二个核苷酸的容纳口袋的功能。另一方面,在水溶液系统中的MD模拟表明,在无帽的eIF4E中,帽结合口袋,特别是其C端环结构是灵活的,并且帽结合口袋的入口变窄,尽管深度相对不变。SDS - PAGE分析表明,与结合帽或4E - BP/结合帽的eIF4E相比,这种结构不稳定性与无帽的eIF4E的快速降解高度相关,这表明二元或三元复合物的形成赋予了eIF4E结构稳定性。m⁷GpppA结合的Ser209磷酸化的eIF4E的MD模拟表明,帽结合入口的大小取决于Ser209磷酸化的电离状态,这与通过eIF4E磷酸化的开启/关闭的调节功能相关。