Wyse Bruce D, Prior Ian A, Qian Hongwei, Morrow Isabel C, Nixon Susan, Muncke Cornelia, Kurzchalia Teymuras V, Thomas Walter G, Parton Robert G, Hancock John F
Department of Molecular and Cellular Pathology, University of Queensland, Brisbane, Queensland, Australia.
J Biol Chem. 2003 Jun 27;278(26):23738-46. doi: 10.1074/jbc.M212892200. Epub 2003 Apr 13.
The mechanisms involved in angiotensin II type 1 receptor (AT1-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT1-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT1-R in caveolae, AT1-R.caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT1-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT1-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT1-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT1-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT1-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT1-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT1-R through the exocytic pathway, but this does not result in AT1-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT1-R.
血管紧张素II 1型受体(AT1-R)运输及膜定位所涉及的机制在很大程度上尚不清楚。在本研究中,我们研究了小窝蛋白在这些过程中的作用。质膜片层的电子显微镜观察显示,AT1-R并不集中在小窝中,而是聚集在不依赖胆固醇的微结构域中;激活后,它会部分重新分布到脂筏中。尽管小窝中缺乏AT1-R,但在共表达这两种蛋白的细胞中很容易检测到AT1-R-小窝蛋白复合物。这种相互作用需要完整的小窝蛋白支架结构域,因为缺乏功能性小窝蛋白支架结构域的突变小窝蛋白不会与AT1-R相互作用。定位于脂滴的N端截短的小窝蛋白-3(CavDGV)或积聚在高尔基体中的点突变体Cav3-P104L的表达分别将AT1-R错误定位于脂滴和高尔基体。错误定位导致AT1-R异常成熟和表面表达,补充胆固醇并不能逆转这些效应。同样,小窝蛋白结合位点中芳香族残基的突变会消除AT1-R的细胞表面表达。在缺乏小窝蛋白-1或小窝蛋白-3的细胞中,AT1-R不会运输到细胞表面,除非异位表达小窝蛋白。在小窝蛋白-1基因敲除小鼠中也观察到了这一现象,与对照组相比,其肾脏中AT1-R水平降低了55%。综上所述,我们的结果表明,与小窝蛋白的直接相互作用是AT1-R通过胞吐途径运输所必需的,但这不会导致AT1-R被隔离在小窝中。因此,小窝蛋白作为AT1-R的分子伴侣而非质膜支架发挥作用。