文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用人工神经网络进行QSAR/QSPR研究的选择性描述符剪枝

Selective descriptor pruning for QSAR/QSPR studies using artificial neural networks.

作者信息

Turner Joseph V, Cutler David J, Spence Ian, Maddalena Desmond J

机构信息

Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.

出版信息

J Comput Chem. 2003 May;24(7):891-7. doi: 10.1002/jcc.10148.


DOI:10.1002/jcc.10148
PMID:12692798
Abstract

Selection of optimal descriptors in quantitative structure-activity-property relationship (QSAR/QSPR) studies has been a perennial problem. Artificial Neural Networks (ANNs) have been used widely in QSAR/QSPR studies but less widely in descriptor selection. The current study used ANNs to select an optimal set of descriptors using large numbers of input variables. The effects of clean, noisy, and random input descriptors with linear, nonlinear, and periodic data on synthetic and real data QSAR/QSPR sets were examined. The optimal set of descriptors could be determined using a signal-to-noise ratio method. The optimal values for the rho parameter, which relates sample size to network architecture, were found to vary with the type of data. ANNs were able to detect meaningful descriptors in the presence of large numbers of random false descriptors.

摘要

在定量构效关系(QSAR)/定量构性关系(QSPR)研究中,选择最优描述符一直是个长期存在的问题。人工神经网络(ANN)在QSAR/QSPR研究中已被广泛应用,但在描述符选择方面的应用较少。当前研究使用人工神经网络,通过大量输入变量来选择一组最优描述符。研究考察了具有线性、非线性和周期性数据的纯净、有噪声和随机输入描述符对合成数据和真实数据QSAR/QSPR集的影响。可以使用信噪比方法确定最优描述符集。发现将样本大小与网络架构相关联的rho参数的最优值会因数据类型而异。在存在大量随机错误描述符的情况下,人工神经网络能够检测出有意义的描述符。

相似文献

[1]
Selective descriptor pruning for QSAR/QSPR studies using artificial neural networks.

J Comput Chem. 2003-5

[2]
Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods.

J Chem Inf Model. 2006

[3]
Legitimate utilization of large descriptor pools for QSPR/QSAR models.

J Chem Inf Model. 2008-11

[4]
Toward generating simpler QSAR models: nonlinear multivariate regression versus several neural network ensembles and some related methods.

J Chem Inf Comput Sci. 2003

[5]
Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes: a combined data splitting-feature selection strategy.

Anal Chim Acta. 2007-5-29

[6]
Neural networks in building QSAR models.

Methods Mol Biol. 2008

[7]
QSAR--how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets.

J Chem Inf Model. 2006

[8]
Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.

J Mol Graph Model. 2006-9

[9]
y-Randomization and its variants in QSPR/QSAR.

J Chem Inf Model. 2007

[10]
Interpreting computational neural network QSAR models: a measure of descriptor importance.

J Chem Inf Model. 2005

引用本文的文献

[1]
Bioavailability prediction based on molecular structure for a diverse series of drugs.

Pharm Res. 2004-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索