文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定量构效关系——在实际应用中效果如何?企业数据集无偏横截面描述符集的比较。

QSAR--how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets.

作者信息

Gedeck Peter, Rohde Bernhard, Bartels Christian

机构信息

Novartis Institutes for BioMedical Research, Novartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK.

出版信息

J Chem Inf Model. 2006 Sep-Oct;46(5):1924-36. doi: 10.1021/ci050413p.


DOI:10.1021/ci050413p
PMID:16995723
Abstract

The quality of QSAR (Quantitative Structure-Activity Relationships) predictions depends on a large number of factors including the descriptor set, the statistical method, and the data sets used. Here we study the quality of QSAR predictions mainly as a function of the data set and descriptor type using partial least squares as the statistical modeling method. The study makes use of the fact that we have access to a large number of data sets and to a variety of different QSAR descriptors. The main conclusions are that the quality of the predictions depends both on the data set and the descriptor used. The quality of the predictions correlates positively with the size of the data set and the range of biological activities. There is no clear dependence of the quality of the predictions on the complexity of the data set. All of the descriptors tested produced useful predictions for some of the data sets. None of the descriptors is best for all data sets; it is therefore necessary to test in each individual case, which descriptor produces the best model. In our tests, 2D fragment based descriptors usually performed better than simpler descriptors based on augmented atom types. Possible reasons for these observations are discussed.

摘要

定量构效关系(QSAR)预测的质量取决于大量因素,包括描述符集、统计方法以及所使用的数据集。在此,我们主要使用偏最小二乘法作为统计建模方法,研究QSAR预测质量作为数据集和描述符类型的函数关系。该研究利用了我们能够获取大量数据集以及各种不同QSAR描述符这一事实。主要结论是,预测质量既取决于所使用的数据集,也取决于描述符。预测质量与数据集大小和生物活性范围呈正相关。预测质量与数据集的复杂性没有明显的依赖关系。所有测试的描述符对某些数据集都产生了有用的预测。没有一个描述符对所有数据集都是最佳的;因此,有必要在每个具体案例中测试哪个描述符能产生最佳模型。在我们的测试中,基于二维片段 的描述符通常比基于增强原子类型的更简单描述符表现更好。讨论了这些观察结果的可能原因。

相似文献

[1]
QSAR--how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets.

J Chem Inf Model. 2006

[2]
Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods.

J Chem Inf Model. 2006

[3]
A comparison of methods for modeling quantitative structure-activity relationships.

J Med Chem. 2004-10-21

[4]
Toward generating simpler QSAR models: nonlinear multivariate regression versus several neural network ensembles and some related methods.

J Chem Inf Comput Sci. 2003

[5]
Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.

J Chem Inf Model. 2008-5

[6]
Combinatorial QSAR modeling of P-glycoprotein substrates.

J Chem Inf Model. 2006

[7]
Linear indices of the "molecular pseudograph's atom adjacency matrix": definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors.

J Chem Inf Comput Sci. 2004

[8]
Application of MOLMAP approach for QSAR modeling of various biological activities using substituent electronic descriptors.

J Comput Chem. 2009-10

[9]
Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration.

J Mol Graph Model. 2007-10

[10]
In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage.

J Chem Inf Model. 2010-7-26

引用本文的文献

[1]
Enhancing the confidence of potential targets enriched by similarity-centric models: the crucial role of the similarity threshold.

Front Pharmacol. 2025-8-8

[2]
Qsarna: An Online Tool for Smart Chemical Space Navigation in Drug Design.

J Chem Inf Model. 2025-8-11

[3]
The topology of molecular representations and its influence on machine learning performance.

J Cheminform. 2025-7-21

[4]
Benchmarking ML in ADMET predictions: the practical impact of feature representations in ligand-based models.

J Cheminform. 2025-7-21

[5]
Application of the digital annealer unit in optimizing chemical reaction conditions for enhanced production yields.

J Cheminform. 2025-7-14

[6]
Targeting Drug Resistance in Cancer: Dimethoxycurcumin as a Functional Antioxidant Targeting ABCC3.

Antioxidants (Basel). 2025-5-16

[7]
Predictive modeling of visible-light azo-photoswitches' properties using structural features.

J Cheminform. 2025-4-1

[8]
An active representation learning method for reaction yield prediction with small-scale data.

Commun Chem. 2025-2-10

[9]
MTAF-DTA: multi-type attention fusion network for drug-target affinity prediction.

BMC Bioinformatics. 2024-12-5

[10]
Innovative virtual screening of PD-L1 inhibitors: the synergy of molecular similarity, neural networks and GNINA docking.

Future Med Chem. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索