Ikeda Masato, Takeuchi Masayuki, Shinkai Seiji, Tani Fumito, Naruta Yoshinori, Sakamoto Shigeru, Yamaguchi Kentaro
Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 812-8581, Japan.
Chemistry. 2002 Dec 16;8(24):5542-50.
A series of cerium(IV) bisporphyrinate double-deckers [Ce(bbpp)2] (BBPP = 5,15-bis(4-butoxyphenyl) porphyrin dianion), [Ce(tmpp)2] (TMPP = 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin dianion), [Ce(tfpp)2] (TFPP = 5,10,15,20-tetrakis(4-fluorophenyl)porphyrin dianion), [Ce(tmcpp)2] (TMCPP = 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin dianion), and [Ce(tmpp)(tmcpp)] was prepared. They bind three Ag+ ions to their concave porphyrin pi subunits (pi-clefts) according to a positive homotropic allosteric mechanism with Hill coefficients (nH) of 1.7-2.7. The rotation rates of the porphyrin ligands in [Ce(bbpp)2] were evaluated to be 200 s-1 at 20 degrees C (delta G++293 = 14.1 kcal mol-1) and 220 s-1 at -40 degrees C (delta G++233 = 11.0 kcal mol-1) without and with Ag+ ions, respectively. These results consistently support our unexpected finding that Ag+ binding can accelerate rotation of the porphyrin ligand. On the basis of UV-visible, 1H NMR, and resonance Raman spectral measurements, the rate enhancement of the rotational speed of the porphyrin ligands is attributed to conformational changes of the porphyrin in cerium(IV) bis-porphyrinate induced by binding of Ag+ guest ions in the clefts. This novel concept of positive homotropic allosterism is applicable to the molecular design of various supramolecular and switch-functionalized systems.