Kresse H, von Figura K, Buddecke E, Fromme H G
Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):929-41. doi: 10.1515/bchm2.1975.356.s1.929.
"Fibroblast-like" cells from the intimal layer of bovine aorta were grown in culture. The formation, composition, molecular weight and turnover rate of different pools of glycosaminoglycans were investigated in cultures incubated in the presence [35S]sulfate or [14C]glucosamine. The newly synthesized glycosaminoglycans are distributed into an extracellular pool (37 - 58%), a cell-membrane associated or pericellular pool (23 - 33%), and an intracellular pool (19 - 30%), each pool exhibiting a characteristic distribution pattern of chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronate. The distribution pattern of the extracellular glycosaminoglycans resembles closely that found in bovine aorta. A small subfraction of the pericellular pool - tentatively named "undercellular" pool--has been characterized by its high heparan sulfate content. The intracellular and pericellular [35S]glycosaminoglycan pools reach a constant radioactivity after 8-12 h and 24 h, respectively, whereas the extracellular [35S]glycosaminoglycans are secreted into the medium at a linear rate over a period of at least 6 days. The intracellular glycosaminoglycans are mainly in the process of degradation, as indicated by their low molecular weight and by their half-life of 7 h, but intracellular dermatan sulfate is degraded more rapidly (half-life 4-5 h) than intracellular chondroitin sulfate and heparan sulfate (half-life 7-8 h). Glycosaminoglycans leave the pericellular pool with a half-life of 12-14 h by 2 different routes: about 60% disappear as macromolecules into the culture medium, and the remainder is pinocytosed and degraded to a large extent. Extracellular and at least a part of the pericellular glycosaminoglycans are proteoglycans. Even under dissociative conditions (4M guanidinium chloride) their hydrodynamic volume is sufficient for partial exclusion from Sepharose 4B gel. The existence of topographically distinct glycosaminoglycan pools with varying metabolic characteristics and differing accessibility for degradation requiresa reconsideration and a more reserved interpretation of results concerning the turnover rates of glycosaminoglycans as determined in arterial tissue.
培养来自牛主动脉内膜层的“成纤维细胞样”细胞。在添加[35S]硫酸盐或[14C]葡糖胺的培养物中,研究了不同糖胺聚糖池的形成、组成、分子量和周转率。新合成的糖胺聚糖分布于细胞外池(37 - 58%)、细胞膜相关或细胞周池(23 - 33%)和细胞内池(19 - 30%),每个池都呈现出硫酸软骨素、硫酸皮肤素、硫酸乙酰肝素和透明质酸的特征性分布模式。细胞外糖胺聚糖的分布模式与牛主动脉中发现的模式非常相似。细胞周池的一小部分——暂称为“细胞下”池——其特征是硫酸乙酰肝素含量高。细胞内和细胞周的[35S]糖胺聚糖池分别在8 - 12小时和24小时后达到恒定放射性,而细胞外[35S]糖胺聚糖以线性速率分泌到培养基中,至少持续6天。细胞内糖胺聚糖主要处于降解过程中,这由其低分子量和7小时的半衰期表明,但细胞内硫酸皮肤素的降解速度比细胞内硫酸软骨素和硫酸乙酰肝素更快(半衰期4 - 5小时),而细胞内硫酸软骨素和硫酸乙酰肝素的半衰期为7 - 8小时。糖胺聚糖通过2种不同途径以12 - 14小时的半衰期离开细胞周池:约60%作为大分子消失到培养基中,其余部分被胞饮并在很大程度上被降解。细胞外和至少一部分细胞周糖胺聚糖是蛋白聚糖。即使在解离条件下(4M胍盐酸盐),它们的流体力学体积也足以部分排阻于琼脂糖4B凝胶。具有不同代谢特征和不同降解易感性的地形学上不同的糖胺聚糖池的存在,需要重新考虑并更谨慎地解释关于在动脉组织中测定的糖胺聚糖周转率的结果。