Beck Brian J, Aldrich Courtney C, Fecik Robert A, Reynolds Kevin A, Sherman David H
Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, USA.
J Am Chem Soc. 2003 Apr 23;125(16):4682-3. doi: 10.1021/ja029974c.
The unique ability of the pikromycin polyketide synthase (Pik PKS) to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes of polyketide synthesis, specifically, the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII and PikAIV and demonstrated the ability of these proteins to generate triketide lactone products using (14)C-methylmalonyl-CoA as the sole substrate. Monomodular PikAIII generates TKL (1) when reacted alone, and synthesizes TKL (2) upon reaction in combination with PikAIV. Product formation remains dependent on the enzymatic decarboxylation of methylmalonyl-CoA and transfer of the acyl chain within the enzyme rather than acylation by propionyl-CoA from spontaneous decarboxylation. We propose that synthesis of TKL (1) by PikAIII involves iterative assembly of the triketide chain within a PikAIII homodimer analogous to the nonmodular type I PKS systems.
苦霉素聚酮合酶(Pik PKS)生成12元和14元大环内酯的独特能力为探索聚酮合成的基本过程,特别是链延伸过程的机制细节提供了契机。我们已对PikAIII和PikAIV进行了过表达和纯化,并证明了这些蛋白质使用(14)C-甲基丙二酰辅酶A作为唯一底物生成三酮内酯产物的能力。单模块PikAIII单独反应时生成TKL(1),与PikAIV联合反应时合成TKL(2)。产物形成仍然依赖于甲基丙二酰辅酶A的酶促脱羧以及酰基链在酶内的转移,而不是来自自发脱羧的丙酰辅酶A的酰化作用。我们提出,PikAIII合成TKL(1)涉及在PikAIII同型二聚体内三酮链的迭代组装,类似于非模块I型PKS系统。