1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA [3].
1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2].
Nature. 2014 Jun 26;510(7506):560-4. doi: 10.1038/nature13409. Epub 2014 Jun 18.
The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the β-keto intermediate, and after β-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.
聚酮合酶 (PKS) 巨型酶装配线采用模块化架构来合成多样化和生物活性的天然产物,这些产物通常构成许多临床批准的治疗剂的核心结构或完整化学实体。来自委内瑞拉链霉菌的 pikromycin 途径的全长 PKS 模块的结构为模块内酰基载体蛋白 (ACP) 结构域创建了一个反应室,该结构域携带构建块和酰基转移酶、酮合酶和酮还原酶活性位点之间的中间体(见随附文件)。在这里,我们确定了全长 pikromycin PKS 模块在其催化循环的三个关键生化状态下的电子冷冻显微镜结构。每个生化状态都通过自上而下的液相色谱/傅里叶变换离子回旋共振质谱法得到证实。ACP 结构域在聚酮链底物加载到酮合酶的活性位点后、延伸到β-酮中间体后以及β-羟基产物生成后,会以不同的方式和精确的方式定位。这些结构揭示了 ACP 与反应室内催化结构域的连续相互作用的动力学,以及将伸长和加工的聚酮底物转移到 PKS 途径中的下一个模块的动力学。在酶循环过程中,酮还原酶结构域会发生剧烈的构象重排,从而为 ACP 结合的聚酮链延伸中间体的还原处理提供最佳定位。这些发现对功能性 PKS 模块的设计以及生成具有药理相关性分子的途径的工程具有至关重要的意义。