Kawada T, Sato T, Shishido T, Sugimachi M, Sunagawa K
Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka, Japan.
J Gravit Physiol. 2000 Jul;7(2):P137-8.
In order to develop effective counter measures to cardiovascular maladaptation associated with space flight, it is essential to know how dynamic characteristics of blood pressure regulation are altered in space. The open-loop transfer characteristics of the carotid sinus baroreflex can be divided into the neural arc and peripheral arc transfer functions (Ikeda et al. 1996). The neural arc transfer function represents the dynamic input-output characteristics from arterial pressure (AP) to efferent sympathetic nerve activity (SNA), while the peripheral arc transfer function represents those from SNA to AP. Although AP perturbation according to a white noise sequence can be used to estimate the transfer functions under baroreflex closed-loop conditions (Kwanda et al. 1997), arterial catheter implantation necessary to perturb AP limits the applicability of this method to freely moving animal experiments. To overcome this problem, we explored the closed-loop system identification method using electrical stimulation. We used aortic depressor nerve (ADN) stimulation and rapid pacing (RP) of the heart to perturb the arterial baroreflex system.
为了制定针对与太空飞行相关的心血管适应不良的有效对策,了解太空环境中血压调节的动态特性如何改变至关重要。颈动脉窦压力反射的开环传递特性可分为神经弧和外周弧传递函数(池田等人,1996年)。神经弧传递函数代表从动脉血压(AP)到传出交感神经活动(SNA)的动态输入输出特性,而外周弧传递函数代表从SNA到AP的动态输入输出特性。尽管根据白噪声序列进行的动脉血压扰动可用于估计压力反射闭环条件下的传递函数(克万达等人,1997年),但扰动动脉血压所需的动脉导管植入限制了该方法在自由活动动物实验中的适用性。为克服这一问题,我们探索了使用电刺激的闭环系统识别方法。我们使用主动脉减压神经(ADN)刺激和心脏快速起搏(RP)来扰动动脉压力反射系统。