Suppr超能文献

Insulin and glucose regulate the expression of the DNA repair enzyme XPD.

作者信息

Merkel Patricia, Khoury Nasif, Bertolotto Cristina, Perfetti Riccardo

机构信息

Division of Endocrinology and Metabolism, Department of Medicine, Becker Building, Room B-131, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.

出版信息

Mol Cell Endocrinol. 2003 Mar 28;201(1-2):75-85. doi: 10.1016/s0303-7207(02)00432-x.

Abstract

Nucleotide excision repair (NER) of damaged DNA is operated by a complex network of DNA repair enzymes that include a protein termed xeroderma pigmentosum complementation group D (XPD). We have previously reported that the expression of XPD is regulated by activation of the insulin receptor and that mutations of the tyrosine kinase domain of the receptor inhibit the insulin-dependent increase in XPD messenger RNA (mRNA) and protein levels. In the present study, we characterize the insulin-dependent signaling pathway leading to the control of XPD expression. Using Chinese hamster ovary (CHO) cells transfected with the human insulin receptor, we demonstrated that the effect of insulin on XPD mRNA levels was mediated via the RAS-signaling and the p70 S6 kinase pathways. On the other hand, the intracellular level of XPD protein was under the exclusive control of the activation of the RAS-dependent cascade in response to insulin. We also studied the effect of acute and chronic exposures to different concentrations of glucose on the insulin-dependent regulation of intracellular XPD levels. A short-term exposure (48 h) to increasing concentrations of glucose potentiated the insulin-dependent regulation of XPD, and this was associated with an efficient protection against glucose-dependent damage to cellular DNA, as determined by the comet assay. Conversely, in cells that were grown for 3 weeks in the presence of glucose concentration greater than 10 mM, the capability of insulin to regulate the level of XPD was significantly reduced, and this promoted a glucose-dependent accumulation of products of DNA damage. In conclusion, glucose and insulin are important regulators of XPD, and prolonged exposure to toxic levels of glucose reduces the insulin-dependent regulation of DNA repair.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验