Suppr超能文献

计算机辅助蛋白质重组:为比较蛋白质建模增强模板和序列比对选择

In silico protein recombination: enhancing template and sequence alignment selection for comparative protein modelling.

作者信息

Contreras-Moreira Bruno, Fitzjohn Paul W, Bates Paul A

机构信息

Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.

出版信息

J Mol Biol. 2003 May 2;328(3):593-608. doi: 10.1016/s0022-2836(03)00309-7.

Abstract

Comparative modelling of proteins is a predictive technique to build an atomic model for a given amino acid sequence, on the basis of the structures of other proteins (templates) that have been determined experimentally. Critical problems arise in this procedure: selecting the correct templates, aligning the query sequence with them and building the non-conserved surface loops. In this work, we apply a genetic algorithm, with crossover and mutation, as a new tool to overcome the first two. In silico protein recombination proves to be an effective way to exploit the variability of templates and sequence alignments to produce populations of optimized models by artificial selection. Despite some limitations, the procedure is shown to be robust to alignment errors, while simplifying the task of selecting templates, making it a good candidate for automatic building of reliable protein models.

摘要

蛋白质的比较建模是一种预测技术,用于根据已通过实验确定结构的其他蛋白质(模板),为给定的氨基酸序列构建原子模型。此过程中会出现关键问题:选择正确的模板、将查询序列与模板进行比对以及构建非保守表面环。在这项工作中,我们应用一种带有交叉和变异的遗传算法,作为克服前两个问题的新工具。计算机模拟蛋白质重组被证明是一种有效的方法,可利用模板和序列比对的变异性,通过人工选择产生优化模型群体。尽管存在一些局限性,但该过程对比对错误具有鲁棒性,同时简化了选择模板的任务,使其成为自动构建可靠蛋白质模型的良好候选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验