Suppr超能文献

通过在初始模型之间进行混合和匹配来提高基于模板预测的准确性。

Improving the accuracy of template-based predictions by mixing and matching between initial models.

作者信息

Liu Tianyun, Guerquin Michal, Samudrala Ram

机构信息

Department of Microbiology, University of Washington, School of Medicine, Seattle, WA 98195, USA.

出版信息

BMC Struct Biol. 2008 May 5;8:24. doi: 10.1186/1472-6807-8-24.

Abstract

BACKGROUND

Comparative modeling is a technique to predict the three dimensional structure of a given protein sequence based primarily on its alignment to one or more proteins with experimentally determined structures. A major bottleneck of current comparative modeling methods is the lack of methods to accurately refine a starting initial model so that it approaches the resolution of the corresponding experimental structure. We investigate the effectiveness of a graph-theoretic clique finding approach to solve this problem.

RESULTS

Our method takes into account the information presented in multiple templates/alignments at the three-dimensional level by mixing and matching regions between different initial comparative models. This method enables us to obtain an optimized conformation ensemble representing the best combination of secondary structures, resulting in the refined models of higher quality. In addition, the process of mixing and matching accumulates near-native conformations, resulting in discriminating the native-like conformation in a more effective manner. In the seventh Critical Assessment of Structure Prediction (CASP7) experiment, the refined models produced are more accurate than the starting initial models.

CONCLUSION

This novel approach can be applied without any manual intervention to improve the quality of comparative predictions where multiple template/alignment combinations are available for modeling, producing conformational models of higher quality than the starting initial predictions.

摘要

背景

比较建模是一种主要基于给定蛋白质序列与一个或多个具有实验确定结构的蛋白质的比对来预测其三维结构的技术。当前比较建模方法的一个主要瓶颈是缺乏准确优化初始模型的方法,以使模型接近相应实验结构的分辨率。我们研究了一种图论团簇查找方法解决此问题的有效性。

结果

我们的方法通过混合和匹配不同初始比较模型之间的区域,在三维层面考虑多个模板/比对中呈现的信息。该方法使我们能够获得一个优化的构象集合,代表二级结构的最佳组合,从而得到更高质量的优化模型。此外,混合和匹配过程积累了接近天然的构象,从而更有效地辨别出类似天然的构象。在第七届蛋白质结构预测关键评估(CASP7)实验中,生成的优化模型比初始模型更准确。

结论

这种新方法无需任何人工干预即可应用于提高比较预测的质量,在有多个模板/比对组合可用于建模的情况下,生成比初始预测质量更高的构象模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36aa/2424052/8c5dc872319b/1472-6807-8-24-1.jpg

相似文献

2
Modeling structurally variable regions in homologous proteins with rosetta.
Proteins. 2004 May 15;55(3):656-77. doi: 10.1002/prot.10629.
3
A multi-template combination algorithm for protein comparative modeling.
BMC Struct Biol. 2008 Mar 17;8:18. doi: 10.1186/1472-6807-8-18.
5
Comparative protein structure modeling by iterative alignment, model building and model assessment.
Nucleic Acids Res. 2003 Jul 15;31(14):3982-92. doi: 10.1093/nar/gkg460.
6
Comparative modeling without implicit sequence alignments.
Bioinformatics. 2007 Oct 1;23(19):2522-7. doi: 10.1093/bioinformatics/btm380. Epub 2007 Jul 27.
7
Structure-dependent sequence alignment for remotely related proteins.
Bioinformatics. 2002 Dec;18(12):1658-65. doi: 10.1093/bioinformatics/18.12.1658.
9
ESyPred3D: Prediction of proteins 3D structures.
Bioinformatics. 2002 Sep;18(9):1250-6. doi: 10.1093/bioinformatics/18.9.1250.
10
Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments.
Bioinformatics. 2007 Oct 1;23(19):2558-65. doi: 10.1093/bioinformatics/btm377. Epub 2007 Sep 6.

引用本文的文献

1
Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform.
Curr Pharm Des. 2016;22(21):3109-23. doi: 10.2174/1381612822666160325121943.
2
Bhageerath-H: a homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins.
BMC Bioinformatics. 2014;15 Suppl 16(Suppl 16):S7. doi: 10.1186/1471-2105-15-S16-S7. Epub 2014 Dec 8.
3
From local structure to a global framework: recognition of protein folds.
J R Soc Interface. 2014 Apr 16;11(95):20131147. doi: 10.1098/rsif.2013.1147. Print 2014 Jun 6.
4
patGPCR: a multitemplate approach for improving 3D structure prediction of transmembrane helices of G-protein-coupled receptors.
Comput Math Methods Med. 2013;2013:486125. doi: 10.1155/2013/486125. Epub 2013 Mar 11.
5
Effect of using suboptimal alignments in template-based protein structure prediction.
Proteins. 2011 Jan;79(1):315-34. doi: 10.1002/prot.22885.
6
Q-Dock(LHM): Low-resolution refinement for ligand comparative modeling.
J Comput Chem. 2010 Apr 15;31(5):1093-105. doi: 10.1002/jcc.21395.
7
Protein structure prediction and model quality assessment.
Drug Discov Today. 2009 Apr;14(7-8):386-93. doi: 10.1016/j.drudis.2008.11.010. Epub 2009 Jan 15.

本文引用的文献

1
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
2
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15.
3
Inferring function using patterns of native disorder in proteins.
PLoS Comput Biol. 2007 Aug;3(8):e162. doi: 10.1371/journal.pcbi.0030162. Epub 2007 Jul 3.
4
Protein-structure prediction by recombination of fragments.
Chembiochem. 2006 Jan;7(1):19-27. doi: 10.1002/cbic.200500235.
6
PROTINFO: new algorithms for enhanced protein structure predictions.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W77-80. doi: 10.1093/nar/gki403.
7
A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction.
Curr Opin Struct Biol. 2005 Jun;15(3):285-9. doi: 10.1016/j.sbi.2005.05.011.
8
All are not equal: a benchmark of different homology modeling programs.
Protein Sci. 2005 May;14(5):1315-27. doi: 10.1110/ps.041253405.
9
Accuracy of structure-derived properties in simple comparative models of protein structures.
Nucleic Acids Res. 2005 Jan 12;33(1):244-59. doi: 10.1093/nar/gki162. Print 2005.
10
Protein refinement: a new challenge for CASP in its 10th anniversary.
Bioinformatics. 2005 Feb 1;21(3):277. doi: 10.1093/bioinformatics/bti249. Epub 2005 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验