Suppr超能文献

Immobilization of Candida krusei cells producing phytase in alginate gel beads: an application of the preparation of myo-inositol phosphates.

作者信息

Quan C S, Fan S D, Ohta Y

机构信息

Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, 739-8528 Higashi-Hiroshima, Japan.

出版信息

Appl Microbiol Biotechnol. 2003 Jul;62(1):41-7. doi: 10.1007/s00253-003-1247-1. Epub 2003 Apr 23.

Abstract

Cells of Candida krusei capable of producing phytase were immobilized in Ca-alginate gel beads and used for the preparation of myo-inositol phosphates. The immobilization yield was increased about 5-fold after the beads were treated for 96 h at pH 4.0, 4 degrees C. The increased yield was retained, even after 1 month, when the cells were kept at this temperature and pH. No shift in the pH optima of phytase of the immobilized cells was observed, compared with that of free cells. However, the optimum temperature for the enzyme of the immobilized cells was 55 degrees C, which was 15 degrees C higher than that of free cells. The degradation characteristics of the phytate in immobilized cells packed in a glass column (i.d. 1.2 cm, length 20 cm) were investigated. The variation in the composition of the products results from a change in the flow rate of phytate solution (5 mM). At a flow rate of 1.30 ml/min, a mixture of myo-inositol-2-monophosphate, myo-inositol-1,2,5-triphosphate and myo-inositol-1,2,5,6-tetrakisphosphate was produced, in which the latter two were physiologically active. Also, it was found by NMR analysis that the enzyme of this strain produced only one isomer of each of the inositol phosphates, with the exception of myo-inositol pentakisphosphate. Therefore, the pure isomers were easily isolated using ion-exchange chromatography.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验