Suppr超能文献

[Effect of cGMP-dependent signaling system in regulation of osmotic permeability in the frog urinary bladder].

作者信息

Fok E M, Lavrova E A, Bakhteeva V T, Parnova R G

机构信息

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Acad. Sci., 194223, St. Petersburg, pr. M. Toreza, 44, Russia.

出版信息

Ross Fiziol Zh Im I M Sechenova. 2003 Feb;89(2):193-9.

Abstract

In frogs' isolated urinary bladders, contribution of cytosolic guanylate cyclase and cGMP-dependent protein kinase to regulation of osmotic permeability was studied. ODQ (25-100 microM), an inhibitor of cytosolic guanylate cyclase induced an increase of vasotocin-activated osmotic permeability but had no effect on the hormone-activated transepithelial urea transport. In isolated mucosal epithelial cells ODQ (50 microM) decreased the concentration of intracellular cGMP. In these cells L-NAME (0.5 nM), an inhibitor of NO synthase, also decreased the level of cGMP whereas cAMP was significantly increased. 8-pCPT-cGMP (25 and 50 microM), a permeable cGMP analogue which selectively activates protein kinase G, inhibited vasotocin-induced increase of water transport along osmotic gradient indicating that protein kinase G is involved in regulation of water reabsorption. The data obtained show that NO/cGMP signalling system in the frog urinary bladder appears to be a negative modulator of vasotocin-activated increase of osmotic permeability.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验