Lian Jun, Cotrutz Cristian, Xing Lei
Department of Radiation Oncology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305-5304, USA.
Med Phys. 2003 Apr;30(4):655-66. doi: 10.1118/1.1561622.
The dose optimization in inverse planning is realized under the guidance of an objective function. The prescription doses in a conventional approach are usually rigid values, defining in most instances an ill-conditioned optimization problem. In this work, we propose a more general dose optimization scheme based on a statistical formalism [Xing et al., Med. Phys. 21, 2348-2358 (1999)]. Instead of a rigid dose, the prescription to a structure is specified by a preference function, which describes the user's preference over other doses in case the most desired dose is not attainable. The variation range of the prescription dose and the shape of the preference function are predesigned by the user based on prior clinical experience. Consequently, during the iterative optimization process, the prescription dose is allowed to deviate, with a certain preference level, from the most desired dose. By not restricting the prescription dose to a fixed value, the optimization problem becomes less ill-defined. The conventional inverse planning algorithm represents a special case of the new formalism. An iterative dose optimization algorithm is used to optimize the system. The performance of the proposed technique is systematically studied using a hypothetical C-shaped tumor with an abutting circular critical structure and a prostate case. It is shown that the final dose distribution can be manipulated flexibly by tuning the shape of the preference function and that using a preference function can lead to optimized dose distributions in accordance with the planner's specification. The proposed framework offers an effective mechanism to formalize the planner's priorities over different possible clinical scenarios and incorporate them into dose optimization. The enhanced control over the final plan may greatly facilitate the IMRT treatment planning process.
逆向计划中的剂量优化是在目标函数的指导下实现的。传统方法中的处方剂量通常是固定值,在大多数情况下定义了一个病态的优化问题。在这项工作中,我们基于一种统计形式主义[邢等人,《医学物理》21,2348 - 2358(1999)]提出了一种更通用的剂量优化方案。对一个结构的处方不是固定剂量,而是由一个偏好函数指定,该函数描述了在最期望的剂量无法达到时用户对其他剂量的偏好。处方剂量的变化范围和偏好函数的形状由用户根据先前的临床经验预先设计。因此,在迭代优化过程中,处方剂量被允许在一定的偏好水平下偏离最期望的剂量。通过不将处方剂量限制为固定值,优化问题变得不那么病态。传统的逆向计划算法是新形式主义的一个特殊情况。使用一种迭代剂量优化算法来优化系统。使用一个假设的C形肿瘤以及一个邻接圆形关键结构的前列腺病例系统地研究了所提出技术的性能。结果表明,通过调整偏好函数的形状可以灵活地控制最终剂量分布,并且使用偏好函数可以根据计划者的规范得出优化的剂量分布。所提出的框架提供了一种有效的机制,将计划者在不同可能临床场景中的优先级形式化,并将它们纳入剂量优化。对最终计划的增强控制可能极大地促进调强放疗治疗计划过程。