Suppr超能文献

旋转治疗的多目标优化方法。二、前列腺几何形状的帕累托最优曲面和调制的块状弧的线性组合。

An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry.

机构信息

Department of Physics, Clatterbridge Centre for Oncology, Clatterbridge Road, Bebington CH63 4JY, United Kingdom.

出版信息

Med Phys. 2010 Jun;37(6):2606-16. doi: 10.1118/1.3427410.

Abstract

PURPOSE

The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning.

METHODS

In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study.

RESULTS

For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation.

CONCLUSIONS

The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.

摘要

目的

本研究旨在进一步发展作者最近提出的旋转治疗多目标优化方法[J. Pardo-Montero 和 J. D. Fenwick,“旋转治疗的多目标优化方法”,《医学物理学》36,3292-3303(2009)],特别是针对实际几何形状的应用,并通过与通过逆规划获得的帕累托最优计划进行比较来研究使用这种方法获得的计划的质量(帕累托最优)。

方法

在作者之前的工作中,提出了一种从少量基于几何的弧中构建大量具有不同目标折衷的计划的方法,每个弧都优先考虑不同的目标。在这里,对该方法进行了进一步的开发和研究。研究了两种构建这些弧的不同技术,一种基于图像重建算法,另一种基于更常见的梯度下降算法。简要报道了以前的工作中处理与靶区相邻的器官的困难,使用部分 OAR 解锁进行了研究。通过与从逆规划获得的帕累托前沿进行比较来研究解决方案的最优性。使用相对欧几里得距离来测量这些计划与帕累托前沿的距离,并使用剂量体积直方图比较来评估这些距离的临床影响。使用前列腺几何形状进行了研究。

结果

对于与靶区相邻的受阻 OAR 的几何形状,适度的 OAR 解锁可以显著改善靶区剂量分布并最小化热点,同时不会过度损害器官的剂量保护。图像重建类型和梯度下降受阻弧计算产生相似的结果。使用大量逆计划重建的前列腺几何形状的帕累托前沿呈现出冰球棒形状,包括两个区域:一个区域是目标的剂量接近处方,器官风险剂量和(小)目标剂量变化之间可以进行权衡,另一个区域是直肠大量节省,但代价是目标剂量严重不足。遵循使用共形弧和四个受阻弧的方法计算的计划通常接近帕累托前沿,尽管一些计划与帕累托前沿的高梯度区域的距离可能更大。只有大约 12%的计划与帕累托前沿的相对欧几里得距离为 0.15 或更小。使用 Craft 的替代距离度量标准[“在凸多准则优化中计算和控制帕累托曲面的离散表示误差”,《物理医学》(即将出版)],大约 2/5 的计划距离前沿超过 0.05。受阻弧的计算速度非常快,算法需要常规逆计划计算每个迭代的运行时间的 35%-80%。

结论

旋转治疗多目标优化的基于几何的弧方法可以获得接近帕累托前沿的解决方案。图像重建类型和梯度下降算法都产生类似的调制弧,后者可能更受欢迎,因为它更容易在标准治疗计划系统中实现。适度的解锁为与 PTV 相邻的 OAR 提供了一种很好的处理方法。基于几何的弧的优化比通常的逆治疗计划优化更快,因此这种方法比基于逆的帕累托前沿重建更快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验