Suppr超能文献

传递性、灵活性、联合表征与海马体。II. 计算分析。

Transitivity, flexibility, conjunctive representations, and the hippocampus. II. A computational analysis.

作者信息

Frank Michael J, Rudy Jerry W, O'Reilly Randall C

机构信息

Department of Psychology, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

Hippocampus. 2003;13(3):341-54. doi: 10.1002/hipo.10084.

Abstract

A computational neural network model is presented that explains how the hippocampus can contribute to transitive inference performance observed in rats (Dusek and Eichenbaum, 1997. Proc Natl Acad Sci U S A 94:7109-7114; Van Elzakker et al., 2003. Hippocampus 12:this issue). In contrast to existing theories that emphasize the idea that the hippocampus contributes by flexibly relating previously encoded memories, we find that the hippocampus contributes by altering the elemental associative weights of individual stimulus elements during learning. We use this model to account for a range of existing data and to make a number of distinctive predictions that clearly contrast these two views.

摘要

本文提出了一种计算神经网络模型,该模型解释了海马体如何有助于大鼠的传递性推理表现(Dusek和Eichenbaum,1997年。《美国国家科学院院刊》94:7109 - 7114;Van Elzakker等人,2003年。《海马体》12:本期)。与现有理论强调海马体通过灵活关联先前编码的记忆来发挥作用不同,我们发现海马体在学习过程中通过改变单个刺激元素的基本关联权重来发挥作用。我们使用这个模型来解释一系列现有数据,并做出一些独特的预测,这些预测清楚地对比了这两种观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验