Suppr超能文献

Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons in rats.

作者信息

Wang Jin Hui

机构信息

Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.

出版信息

Brain Res Bull. 2003 Apr 15;60(1-2):53-8. doi: 10.1016/s0361-9230(03)00026-1.

Abstract

Neural excitotoxicity is a typical factor in the early phase pathogenesis of cerebral ischemia. Its cellular and molecular mechanisms are still unclear and clinical approaches are still lacking of promising therapies. We have examined the vulnerability of cortical neurons to short-term ischemia in rats by simultaneously analyzing the activities of inhibitory and principal neurons in brain slices. Our results demonstrate that short-term in vitro ischemia permanently impairs the excitability of inhibitory neurons (IN) and synaptic transmission mediated by gamma-aminobutyric acid (GABA). However, principal neurons appear to be more exciting during the reperfusion. The vulnerability of inhibitory neurons to ischemia acquires during postnatal development. Our findings signify a major contribution of the ischemic dysfunction of inhibitory neurons to neural excitotoxicity as well as a strategy to prevent the progress of ischemic stroke by protecting inhibitory neurons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验