School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
Department of Physics, Illinois State University, Normal, IL, 61790, USA.
J Comput Neurosci. 2022 Aug;50(3):275-298. doi: 10.1007/s10827-022-00815-x. Epub 2022 Apr 19.
Pyramidal cell spike block is a common occurrence in migraine with aura and epileptic seizures. In both cases, pyramidal cells experience hyperexcitation with rapidly increasing firing rates, major changes in electrochemistry, and ultimately spike block that temporarily terminates neuronal activity. In cortical spreading depression (CSD), spike block propagates as a slowly traveling wave of inactivity through cortical pyramidal cells, which is thought to precede migraine attacks with aura. In seizures, highly synchronized cortical activity can be interspersed with, or terminated by, spike block. While the identifying characteristic of CSD and seizures is the pyramidal cell hyperexcitation, it is currently unknown how the dynamics of the cortical microcircuits and inhibitory interneurons affect the initiation of hyperexcitation and subsequent spike block.We tested the contribution of cortical inhibitory interneurons to the initiation of spike block using a cortical microcircuit model that takes into account changes in ion concentrations that result from neuronal firing. Our results show that interneuronal inhibition provides a wider dynamic range to the circuit and generally improves stability against spike block. Despite these beneficial effects, strong interneuronal firing contributed to rapidly changing extracellular ion concentrations, which facilitated hyperexcitation and led to spike block first in the interneuron and then in the pyramidal cell. In all cases, a loss of interneuronal firing triggered pyramidal cell spike block. However, preventing interneuronal spike block was insufficient to rescue the pyramidal cell from spike block. Our data thus demonstrate that while the role of interneurons in cortical microcircuits is complex, they are critical to the initiation of pyramidal cell spike block. We discuss the implications that localized effects on cortical interneurons have beyond the isolated microcircuit and their contribution to CSD and epileptic seizures.
锥体细胞尖峰阻断是偏头痛伴先兆和癫痫发作中的常见现象。在这两种情况下,锥体细胞经历超兴奋性,其放电率迅速增加,电化学发生重大变化,最终导致尖峰阻断,暂时终止神经元活动。在皮质扩散性抑制(CSD)中,尖峰阻断作为无活性的缓慢传播波通过皮质锥体细胞传播,这被认为是偏头痛先兆发作的前兆。在癫痫发作中,高度同步的皮质活动可以与尖峰阻断交织,或被尖峰阻断终止。虽然 CSD 和癫痫发作的特征是锥体细胞超兴奋性,但目前尚不清楚皮质微循环和抑制性中间神经元的动力学如何影响超兴奋性的起始和随后的尖峰阻断。我们使用考虑到神经元放电引起的离子浓度变化的皮质微电路模型来测试皮质抑制性中间神经元对尖峰阻断起始的贡献。我们的结果表明,中间神经元抑制为电路提供了更宽的动态范围,通常可提高稳定性,防止尖峰阻断。尽管有这些有益的效果,但强烈的中间神经元放电会导致细胞外离子浓度的快速变化,从而促进超兴奋性,并首先导致中间神经元然后是锥体细胞发生尖峰阻断。在所有情况下,中间神经元放电的丧失都会触发锥体细胞尖峰阻断。然而,阻止中间神经元的尖峰阻断不足以使锥体细胞免于尖峰阻断。因此,我们的数据表明,尽管中间神经元在皮质微电路中的作用很复杂,但它们对于锥体细胞尖峰阻断的起始至关重要。我们讨论了局部对皮质中间神经元的影响超出孤立微电路的范围及其对 CSD 和癫痫发作的贡献。