Suppr超能文献

分裂情感性障碍的长期治疗:综述与建议

Long-term treatment of schizoaffective disorder: review and recommendations.

作者信息

Baethge C

机构信息

Department of Psychiatry and Psychotherapy, Freie Universität Berlin, Berlin, Germany.

出版信息

Pharmacopsychiatry. 2003 Mar-Apr;36(2):45-56. doi: 10.1055/s-2003-39045.

Abstract

OBJECTIVE

To provide an overview of long-term treatment studies in schizoaffective disorder (SAD) and to draw conclusions for clinical decision-making.

METHOD

Literature was identified by searches in Medline, Embase, and the Cochrane Controlled Trials Register as well as a hand-search of handbook and journal articles. Studies were considered relevant if they reported on trials of at least 6 months duration and if they presented data for the SAD patients in particular.

RESULTS

Thirty-nine studies met the criteria and 18 used modern diagnostic criteria, i. e., RDC, DSM-III-R, -IV, or ICD-10. The studies focused on lithium, anticonvulsants, and antipsychotics. The scientific evidence for prophylactic efficacy of the different substances is poor. Nevertheless, the data encourage the use of lithium and carbamazepine in primarily affective patients and clozapine in primarily schizophrenic patients and possibly in mainly affective patients as well.

CONCLUSIONS

There is a considerable need for prospective and controlled studies on the long-term treatment of SAD. However, it seems to be useful to subtype the disorder of the patients into primarily affective vs. schizophrenic schizoaffective disorder and schizodepressive vs. schizobipolar and to treat accordingly.

摘要

目的

概述分裂情感性障碍(SAD)的长期治疗研究,并得出临床决策结论。

方法

通过检索Medline、Embase和Cochrane对照试验注册库以及手工检索手册和期刊文章来识别文献。如果研究报告了至少为期6个月的试验,并且特别给出了SAD患者的数据,则被认为是相关研究。

结果

39项研究符合标准,18项采用了现代诊断标准,即RDC、DSM-III-R、-IV或ICD-10。这些研究聚焦于锂盐、抗惊厥药和抗精神病药物。不同药物预防性疗效的科学证据不足。然而,数据支持在以情感症状为主的患者中使用锂盐和卡马西平,在以精神分裂症症状为主的患者中使用氯氮平,在主要为情感症状的患者中可能也适用。

结论

对SAD的长期治疗非常需要进行前瞻性对照研究。然而,将患者的疾病亚型分为以情感症状为主的分裂情感性障碍与以精神分裂症症状为主的分裂情感性障碍、分裂抑郁型与分裂双相型,并据此进行治疗似乎是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验