Suppr超能文献

利用二维[¹³C,¹H]化学位移相关谱核磁共振测量和累积键子模拟对产黄青霉进行代谢通量和代谢网络分析。

Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation.

作者信息

van Winden Wouter A, van Gulik Walter M, Schipper Dick, Verheijen Peter J T, Krabben Preben, Vinke Jacobus L, Heijnen Joseph J

机构信息

Bioprocestechnology Group, Faculty of Applied Sciences, Delft University of Technology, The Netherlands.

出版信息

Biotechnol Bioeng. 2003 Jul 5;83(1):75-92. doi: 10.1002/bit.10648.

Abstract

At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured (13)C-labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [(13)C, (1)H] COSY data. A new concept is applied for simulation of this type of (13)C-labeling data: cumulative bondomer modeling. The outcomes of the (13)C-labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using (13)C-labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6-phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the (13)C-labeling data. Strict statistical testing of the outcomes of (13)C-labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model.

摘要

目前有两种可供选择的方法来分析代谢网络中的通量

(1)将净转化率的测量结果与一组包括辅因子平衡的代谢物平衡相结合,或者(2)忽略辅因子平衡,将由此产生的自由通量拟合到测量的(13)C标记数据上。在本研究中,这两种方法被应用于以氨或硝酸盐作为氮源生长的产黄青霉的糖酵解和磷酸戊糖途径中的通量分析,预计这两种氮源会导致不同的磷酸戊糖途径通量。所呈现的通量分析基于大量的二维[(13)C,(1)H]COSY数据。一种新的概念被应用于这类(13)C标记数据的模拟:累积键合子建模。基于(13)C标记的通量分析结果与纯代谢物平衡方法的结果有很大不同。使用(13)C标记数据确定的通量显示出高度依赖于所选择的代谢网络。用额外的转酮醇酶和转醛醇酶反应扩展传统的非氧化磷酸戊糖途径,用果糖6-磷酸醛缩酶/二羟基丙酮激酶反应序列扩展糖酵解,或者在模型中添加磷酸烯醇丙酮酸羧激酶反应,可显著提高测量和模拟的核磁共振数据的拟合度。使用非氧化磷酸戊糖途径模型的扩展版本获得的结果表明,转酮醇酶和转醛醇酶反应无需假定为可逆反应就能很好地拟合(13)C标记数据。事实证明,使用实际测量误差对基于(13)C标记的通量分析结果进行严格的统计检验对于验证假定的代谢模型至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验