Katz Bradley A, Elrod Kyle, Verner Erik, Mackman Richard L, Luong Christine, Shrader William D, Sendzik Martin, Spencer Jeffrey R, Sprengeler Paul A, Kolesnikov Aleks, Tai Vincent W-F, Hui Hon C, Breitenbucher J Guy, Allen Darin, Janc James W
Celera, 180 Kimball Way, South San Francisco, CA 94080, USA.
J Mol Biol. 2003 May 23;329(1):93-120. doi: 10.1016/s0022-2836(03)00399-1.
An extensive structural manifold of short hydrogen bond-mediated, active site-directed, serine protease inhibition motifs is revealed in a set of over 300 crystal structures involving a large suite of small molecule inhibitors (2-(2-phenol)-indoles and 2-(2-phenol)-benzimidazoles) determined over a wide range of pH (3.5-11.4). The active site hydrogen-bonding mode was found to vary markedly with pH, with the steric and electronic properties of the inhibitor, and with the type of protease (trypsin, thrombin or urokinase type plasminogen activator (uPA)). The pH dependence of the active site hydrogen-bonding motif is often intricate, constituting a distinct fingerprint of each complex. Isosteric replacements or minor substitutions within the inhibitor that modulate the pK(a) of the phenol hydroxyl involved in short hydrogen bonding, or that affect steric interactions distal to the active site, can significantly shift the pH-dependent structural profile characteristic of the parent scaffold, or produce active site-binding motifs unique to the bound analog. Ionization equilibria at the active site associated with inhibitor binding are probed in a series of the protease-inhibitor complexes through analysis of the pH dependence of the structure and environment of the active site-binding groups involved in short hydrogen bond arrays. Structures determined at high pH (>11), suggest that the pK(a) of His57 is dramatically elevated, to a value as high as approximately 11 in certain complexes. K(i) values involving uPA and trypsin determined as a function of pH for a set of inhibitors show pronounced parabolic pH dependence, the pH for optimal inhibition governed by the pK(a) of the inhibitor phenol involved in short hydrogen bonds. Comparison of structures of trypsin, thrombin and uPA, each bound by the same inhibitor, highlights important structural variations in the S1 and active sites accessible for engineering notable selectivity into remarkably small molecules with low nanomolar K(i) values.
在一系列超过300个晶体结构中,揭示了由短氢键介导、活性位点导向的丝氨酸蛋白酶抑制基序的广泛结构多样性,这些晶体结构涉及一大类小分子抑制剂(2-(2-苯酚)-吲哚和2-(2-苯酚)-苯并咪唑),其测定pH范围很广(3.5 - 11.4)。发现活性位点的氢键模式随pH、抑制剂的空间和电子性质以及蛋白酶类型(胰蛋白酶、凝血酶或尿激酶型纤溶酶原激活剂(uPA))而显著变化。活性位点氢键基序的pH依赖性通常很复杂,构成了每个复合物的独特指纹。抑制剂内的等排取代或微小取代,若调节参与短氢键的酚羟基的pK(a),或影响活性位点远端的空间相互作用,可显著改变母体支架特有的pH依赖性结构特征,或产生结合类似物特有的活性位点结合基序。通过分析参与短氢键阵列的活性位点结合基团的结构和环境的pH依赖性,在一系列蛋白酶 - 抑制剂复合物中探究了与抑制剂结合相关的活性位点的电离平衡。在高pH(>11)下测定的结构表明,His57的pK(a)显著升高,在某些复合物中高达约11。一组抑制剂的uPA和胰蛋白酶的K(i)值作为pH的函数测定,显示出明显的抛物线型pH依赖性,最佳抑制pH由参与短氢键的抑制剂酚的pK(a)决定。比较胰蛋白酶、凝血酶和uPA与相同抑制剂结合的结构,突出了S1和活性位点的重要结构差异,这些差异可用于设计具有低纳摩尔K(i)值的非常小的分子的显著选择性。