Suppr超能文献

估算质子化和电子极化在绝对结合亲和力模拟中的作用。

Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.

机构信息

Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

出版信息

J Chem Theory Comput. 2021 Apr 13;17(4):2541-2555. doi: 10.1021/acs.jctc.0c01305. Epub 2021 Mar 25.

Abstract

Accurate prediction of binding free energies is critical to streamlining the drug development and protein design process. With the advent of GPU acceleration, absolute alchemical methods, which simulate the removal of ligand electrostatics and van der Waals interactions with the protein, have become routinely accessible and provide a physically rigorous approach that enables full consideration of flexibility and solvent interaction. However, standard explicit solvent simulations are unable to model protonation or electronic polarization changes upon ligand transfer from water to the protein interior, leading to inaccurate prediction of binding affinities for charged molecules. Here, we perform extensive simulation totaling ∼540 μs to benchmark the impact of modeling conditions on predictive accuracy for absolute alchemical simulations. Binding to urokinase plasminogen activator (UPA), a protein frequently overexpressed in metastatic tumors, is evaluated for a set of 10 inhibitors with extended flexibility, highly charged character, and titratable properties. We demonstrate that the alchemical simulations can be adapted to utilize the MBAR/PBSA method to improve the accuracy upon incorporating electronic polarization, highlighting the importance of polarization in alchemical simulations of binding affinities. Comparison of binding energy prediction at various protonation states indicates that proper electrostatic setup is also crucial in binding affinity prediction of charged systems, prompting us to propose an alternative binding mode with protonated ligand phenol and Hid-46 at the binding site, a testable hypothesis for future experimental validation.

摘要

准确预测结合自由能对于简化药物开发和蛋白质设计过程至关重要。随着 GPU 加速的出现,绝对化学方法,模拟配体静电和范德华相互作用与蛋白质的去除,已经变得常规可用,并提供了一种物理上严格的方法,可以充分考虑灵活性和溶剂相互作用。然而,标准的显式溶剂模拟无法模拟配体从水中转移到蛋白质内部时的质子化或电子极化变化,导致对带电分子结合亲和力的预测不准确。在这里,我们进行了总计约 540 μs 的广泛模拟,以基准测试建模条件对绝对化学模拟预测准确性的影响。针对一组具有扩展灵活性、高电荷特性和可滴定性质的 10 种抑制剂,评估了与尿激酶纤溶酶原激活剂 (UPA) 的结合。我们证明可以改编化学模拟以利用 MBAR/PBSA 方法来提高包含电子极化时的准确性,突出了极化在结合亲和力的化学模拟中的重要性。在各种质子化状态下的结合能预测比较表明,在预测带电系统的结合亲和力时,适当的静电设置也至关重要,这促使我们提出了一种具有质子化配体苯酚和 Hid-46 的替代结合模式,这是未来实验验证的一个可测试假设。

相似文献

引用本文的文献

1
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.隐式溶剂中结合自由能估计的最佳介电边界
J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10.
3
AmberTools. AmberTools。
J Chem Inf Model. 2023 Oct 23;63(20):6183-6191. doi: 10.1021/acs.jcim.3c01153. Epub 2023 Oct 8.
4
8
Recent Developments in Free Energy Calculations for Drug Discovery.药物发现中自由能计算的最新进展。
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.

本文引用的文献

4
Improved Poisson-Boltzmann Methods for High-Performance Computing.改进的泊松-玻尔兹曼方法用于高性能计算。
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
6
An efficient second-order poisson-boltzmann method.一种高效的二阶泊松-玻尔兹曼方法。
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
7
Ultra-large library docking for discovering new chemotypes.超大库对接发现新化学型。
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验