Suppr超能文献

X-基序核酶的底物特异性和反应动力学

Substrate specificity and reaction kinetics of an X-motif ribozyme.

作者信息

Lazarev Denis, Puskarz Izabela, Breaker Ronald R

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.

出版信息

RNA. 2003 Jun;9(6):688-97. doi: 10.1261/rna.2600503.

Abstract

The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions.

摘要

X基序是一种体外筛选的核酶,它通过内部磷酸酯转移反应催化RNA切割。这类核酶的独特之处在于,在进行体外筛选以利于分离高速催化剂时,它是至少12种不同类别的核酶中占主导地位的克隆。我们研究了X基序的结构和动力学特性,以便为其作为RNA切割剂的应用提供一个框架,并探索这种核酶如何以与四种天然自我切割核酶相似的预测速率常数催化磷酸酯转移。X基序的二级结构包括四个茎元件,它们形成一个中央未配对的连接点。在双分子形式中,这些碱基配对臂中的两个决定了核酶的底物特异性,并且可以改变以靶向不同的RNA进行切割。切割位点的核苷酸识别要求是GD,其中D = G、A或U,切割发生在这两个核苷酸之间。该核酶对二价阳离子辅因子有绝对需求,并且表现出与至少两个金属离子的专一性结合相一致的动力学行为。

相似文献

1
Substrate specificity and reaction kinetics of an X-motif ribozyme.
RNA. 2003 Jun;9(6):688-97. doi: 10.1261/rna.2600503.
2
Biochemical analysis of hatchet self-cleaving ribozymes.
RNA. 2015 Nov;21(11):1845-51. doi: 10.1261/rna.052522.115. Epub 2015 Sep 18.
3
Structural diversity of self-cleaving ribozymes.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5784-9. doi: 10.1073/pnas.97.11.5784.
4
Biochemical analysis of pistol self-cleaving ribozymes.
RNA. 2015 Nov;21(11):1852-8. doi: 10.1261/rna.052514.115. Epub 2015 Sep 18.
5
Biochemical analysis of cleavage and ligation activities of the pistol ribozyme from .
RNA Biol. 2021 Nov;18(11):1858-1866. doi: 10.1080/15476286.2021.1874706. Epub 2021 Feb 23.
6
Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.
Biochemistry. 2015 Oct 20;54(41):6369-81. doi: 10.1021/acs.biochem.5b00824. Epub 2015 Oct 2.
8
Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor.
J Mol Biol. 2000 Jun 23;299(5):1231-43. doi: 10.1006/jmbi.2000.3825.

引用本文的文献

1
Pushing the Limits of Nucleic Acid Function.
Chemistry. 2022 Dec 20;28(71):e202201737. doi: 10.1002/chem.202201737. Epub 2022 Oct 26.
2
iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications.
Nucleic Acids Res. 2016 Apr 7;44(6):2491-500. doi: 10.1093/nar/gkw083. Epub 2016 Mar 1.
3
4
An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence.
Nat Chem Biol. 2013 Dec;9(12):805-10. doi: 10.1038/nchembio.1360. Epub 2013 Oct 6.
5
The importance of peripheral sequences in determining the metal selectivity of an in vitro-selected Co(2+) -dependent DNAzyme.
Chembiochem. 2012 Feb 13;13(3):381-91. doi: 10.1002/cbic.201100724. Epub 2012 Jan 17.
6
Natural and artificial RNAs occupy the same restricted region of sequence space.
RNA. 2010 Feb;16(2):280-9. doi: 10.1261/rna.1923210. Epub 2009 Dec 23.
7
Free energy landscapes of RNA/RNA complexes: with applications to snRNA complexes in spliceosomes.
J Mol Biol. 2006 Mar 17;357(1):292-312. doi: 10.1016/j.jmb.2005.12.014. Epub 2005 Dec 21.
8
A common speed limit for RNA-cleaving ribozymes and deoxyribozymes.
RNA. 2003 Aug;9(8):949-57. doi: 10.1261/rna.5670703.
9
Ribozyme speed limits.
RNA. 2003 Aug;9(8):907-18. doi: 10.1261/rna.5680603.

本文引用的文献

1
Selection, design, and characterization of a new potentially therapeutic ribozyme.
RNA. 2002 Feb;8(2):214-28. doi: 10.1017/s1355838202014723.
2
In vitro evolution suggests multiple origins for the hammerhead ribozyme.
Nature. 2001 Nov 1;414(6859):82-4. doi: 10.1038/35102081.
3
Ribozyme structures and mechanisms.
Annu Rev Biochem. 2000;69:597-615. doi: 10.1146/annurev.biochem.69.1.597.
4
Structural diversity of self-cleaving ribozymes.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5784-9. doi: 10.1073/pnas.97.11.5784.
5
Ribozymes and the anti-gene therapy: how a catalytic RNA can be used to inhibit gene function.
Gene. 1999 Sep 17;237(2):303-10. doi: 10.1016/s0378-1119(99)00334-0.
6
Hammerhead ribozyme kinetics.
RNA. 1998 Aug;4(8):875-89. doi: 10.1017/s1355838298980876.
7
In vitro selection of a purine nucleotide-specific hammerheadlike ribozyme.
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2158-62. doi: 10.1073/pnas.95.5.2158.
8
The therapeutic potential of ribozymes.
Blood. 1998 Jan 15;91(2):371-82.
9
In vitro selection of self-cleaving RNAs with a low pH optimum.
Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10612-7. doi: 10.1073/pnas.94.20.10612.
10
Therapeutic potential and mechanism of action of oligonucleotides and ribozymes.
Biochem Mol Med. 1997 Oct;62(1):11-22. doi: 10.1006/bmme.1997.2631.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验