Suppr超能文献

RNA切割核酶和脱氧核酶的常见速度限制。

A common speed limit for RNA-cleaving ribozymes and deoxyribozymes.

作者信息

Breaker Ronald R, Emilsson Gail Mitchell, Lazarev Denis, Nakamura Shingo, Puskarz Izabela J, Roth Adam, Sudarsan Narasimhan

机构信息

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.

出版信息

RNA. 2003 Aug;9(8):949-57. doi: 10.1261/rna.5670703.

Abstract

It is widely believed that the reason proteins dominate biological catalysis is because polypeptides have greater chemical complexity compared with nucleic acids, and thus should have greater enzymatic power. Consistent with this hypothesis is the fact that protein enzymes typically exhibit chemical rate enhancements that are far more substantial than those achieved by natural and engineered ribozymes. To investigate the true catalytic power of nucleic acids, we determined the kinetic characteristics of 14 classes of engineered ribozymes and deoxyribozymes that accelerate RNA cleavage by internal phosphoester transfer. Half approach a maximum rate constant of approximately 1 min(-1), whereas ribonuclease A catalyzes the same reaction approximately 80,000-fold faster. Additional biochemical analyses indicate that this commonly encountered ribozyme "speed limit" coincides with the theoretical maximum rate enhancement for an enzyme that uses only two specific catalytic strategies. These results indicate that ribozymes using additional catalytic strategies could be made that promote RNA cleavage with rate enhancements that equal those of proteins.

摘要

人们普遍认为,蛋白质主导生物催化的原因在于,与核酸相比,多肽具有更高的化学复杂性,因此应该具有更强的酶活性。与这一假设相符的是,蛋白质酶通常表现出比天然和工程化核酶所实现的化学速率增强更为显著的情况。为了研究核酸的真正催化能力,我们测定了14类通过内部磷酸酯转移加速RNA切割的工程化核酶和脱氧核酶的动力学特征。其中一半接近最大速率常数约为1分钟⁻¹,而核糖核酸酶A催化相同反应的速度快约80000倍。进一步的生化分析表明,这种常见的核酶“速度限制”与仅使用两种特定催化策略的酶的理论最大速率增强相吻合。这些结果表明,可以制造出使用额外催化策略的核酶,以促进RNA切割,其速率增强与蛋白质相当。

相似文献

1
A common speed limit for RNA-cleaving ribozymes and deoxyribozymes.
RNA. 2003 Aug;9(8):949-57. doi: 10.1261/rna.5670703.
2
High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing.
Acc Chem Res. 2020 Dec 15;53(12):2903-2912. doi: 10.1021/acs.accounts.0c00546. Epub 2020 Nov 9.
3
Ribozyme speed limits.
RNA. 2003 Aug;9(8):907-18. doi: 10.1261/rna.5680603.
4
Biochemical analysis of pistol self-cleaving ribozymes.
RNA. 2015 Nov;21(11):1852-8. doi: 10.1261/rna.052514.115. Epub 2015 Sep 18.
6
Substrate specificity and reaction kinetics of an X-motif ribozyme.
RNA. 2003 Jun;9(6):688-97. doi: 10.1261/rna.2600503.
7
Structural diversity of self-cleaving ribozymes.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5784-9. doi: 10.1073/pnas.97.11.5784.
8
Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes.
Biochemistry. 1995 Dec 5;34(48):15813-28. doi: 10.1021/bi00048a027.
9
Biochemical analysis of cleavage and ligation activities of the pistol ribozyme from .
RNA Biol. 2021 Nov;18(11):1858-1866. doi: 10.1080/15476286.2021.1874706. Epub 2021 Feb 23.
10
Biochemical analysis of hatchet self-cleaving ribozymes.
RNA. 2015 Nov;21(11):1845-51. doi: 10.1261/rna.052522.115. Epub 2015 Sep 18.

引用本文的文献

2
Influence of LNA modifications on the activity of the 10-23 DNAzyme.
RSC Adv. 2025 Apr 23;15(17):13031-13040. doi: 10.1039/d5ra00161g. eCollection 2025 Apr 22.
3
Enhanced hammerhead ribozyme turnover rates: Reevaluating therapeutic space for small catalytic RNAs.
Mol Ther Nucleic Acids. 2024 Dec 21;36(1):102431. doi: 10.1016/j.omtn.2024.102431. eCollection 2025 Mar 11.
4
The Programmable Catalytic Core of 8-17 DNAzymes.
Molecules. 2024 May 21;29(11):2420. doi: 10.3390/molecules29112420.
5
The 8-17 DNAzyme can operate in a single active structure regardless of metal ion cofactor.
Nat Commun. 2024 May 17;15(1):4218. doi: 10.1038/s41467-024-48638-x.
6
CHEX-seq detects single-cell genomic single-stranded DNA with catalytical potential.
Nat Commun. 2023 Nov 14;14(1):7346. doi: 10.1038/s41467-023-43158-6.
7
Unraveling the Kinetics of the 10-23 RNA-Cleaving DNAzyme.
Int J Mol Sci. 2023 Sep 5;24(18):13686. doi: 10.3390/ijms241813686.
8
Chemical evolution of an autonomous DNAzyme with allele-specific gene silencing activity.
Nat Commun. 2023 Apr 27;14(1):2413. doi: 10.1038/s41467-023-38100-9.
9
DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells.
Angew Chem Weinheim Bergstr Ger. 2020 Jan 27;132(5):1907-1912. doi: 10.1002/ange.201912514. Epub 2019 Nov 20.
10
1-Deazaguanosine-Modified RNA: The Missing Piece for Functional RNA Atomic Mutagenesis.
J Am Chem Soc. 2022 Jun 15;144(23):10344-10352. doi: 10.1021/jacs.2c01877. Epub 2022 Jun 6.

本文引用的文献

1
Ribozyme speed limits.
RNA. 2003 Aug;9(8):907-18. doi: 10.1261/rna.5680603.
2
Substrate specificity and reaction kinetics of an X-motif ribozyme.
RNA. 2003 Jun;9(6):688-97. doi: 10.1261/rna.2600503.
3
In Vitro Selection of Catalytic Polynucleotides.
Chem Rev. 1997 Apr 1;97(2):371-390. doi: 10.1021/cr960008k.
5
The A730 loop is an important component of the active site of the VS ribozyme.
J Mol Biol. 2001 Sep 28;312(4):663-74. doi: 10.1006/jmbi.2001.4996.
6
Structure and function of the small ribozymes.
Curr Opin Struct Biol. 2001 Jun;11(3):315-20. doi: 10.1016/s0959-440x(00)00207-4.
7
Recent advances in the elucidation of the mechanisms of action of ribozymes.
Nucleic Acids Res. 2001 May 1;29(9):1815-34. doi: 10.1093/nar/29.9.1815.
8
Differences among mechanisms of ribozyme-catalyzed reactions.
Curr Opin Biotechnol. 2000 Aug;11(4):354-62. doi: 10.1016/s0958-1669(00)00110-5.
9
The structural basis of ribosome activity in peptide bond synthesis.
Science. 2000 Aug 11;289(5481):920-30. doi: 10.1126/science.289.5481.920.
10
Structural diversity of self-cleaving ribozymes.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5784-9. doi: 10.1073/pnas.97.11.5784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验