Haas H
Department of Molecular Biology, University of Innsbruck, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria.
Appl Microbiol Biotechnol. 2003 Sep;62(4):316-30. doi: 10.1007/s00253-003-1335-2. Epub 2003 May 21.
To acquire iron, all species have to overcome the problems of iron insolubility and toxicity. In response to low iron availability in the environment, most fungi excrete ferric iron-specific chelators--siderophores--to mobilize this metal. Siderophore-bound iron is subsequently utilized via the reductive iron assimilatory system or uptake of the siderophore-iron complex. Furthermore, most fungi possess intracellular siderophores as iron storage compounds. Molecular analysis of siderophore biosynthesis was initiated by pioneering studies on the basidiomycete Ustilago maydis, and has progressed recently by characterization of the relevant structural and regulatory genes in the ascomycetes Aspergillus nidulans and Neurospora crassa. In addition, significant advances in the understanding of utilization of siderophore-bound iron have been made recently in the yeasts Saccharomyces cerevisiae and Candida albicans as well as in the filamentous fungus A. nidulans. The present review summarizes molecular details of fungal siderophore biosynthesis and uptake, and the regulatory mechanisms involved in control of the corresponding genes.
为获取铁元素,所有物种都必须克服铁的不溶性和毒性问题。针对环境中可利用铁含量较低的情况,大多数真菌会分泌铁特异性螯合剂——铁载体——来 mobilize 这种金属。随后,铁载体结合的铁通过还原铁同化系统或铁载体 - 铁复合物的摄取被利用。此外,大多数真菌拥有细胞内铁载体作为铁储存化合物。铁载体生物合成的分子分析始于对担子菌玉米黑粉菌的开创性研究,并且最近通过对子囊菌构巢曲霉和粗糙脉孢菌中相关结构和调控基因的表征取得了进展。此外,最近在酿酒酵母、白色念珠菌以及丝状真菌构巢曲霉中,对铁载体结合铁的利用的理解也取得了重大进展。本综述总结了真菌铁载体生物合成和摄取的分子细节,以及控制相应基因的调控机制。