Phillips Donald L, Gregg Jillian W
U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, 200 SW 35th St., Corvallis, OR 97333, USA.
Oecologia. 2003 Jul;136(2):261-9. doi: 10.1007/s00442-003-1218-3. Epub 2003 May 21.
Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste stream. In general, the proportional contributions of n+1 different sources can be uniquely determined by the use of n different isotope system tracers (e.g., delta13C, delta15N, delta18O) with linear mixing models based on mass balance equations. Often, however, the number of potential sources exceeds n+1, which prevents finding a unique solution of source proportions. What can be done in these situations? While no definitive solution exists, we propose a method that is informative in determining bounds for the contributions of each source. In this method, all possible combinations of each source contribution (0-100%) are examined in small increments (e.g., 1%). Combinations that sum to the observed mixture isotopic signatures within a small tolerance (e.g., +/-0.1 per thousand ) are considered to be feasible solutions, from which the frequency and range of potential source contributions can be determined. To avoid misrepresenting the results, users of this procedure should report the distribution of feasible solutions rather than focusing on a single value such as the mean. We applied this method to a variety of environmental studies in which stable isotope tracers were used to quantify the relative magnitude of multiple sources, including (1) plant water use, (2) geochemistry, (3) air pollution, and (4) dietary analysis. This method gives the range of isotopically determined source contributions; additional non-isotopic constraints specific to each study may be used to further restrict this range. The breadth of the isotopically determined ranges depends on the geometry of the mixing space and the similarity of source and mixture isotopic signatures. A sensitivity analysis indicated that the estimated ranges vary only modestly with different choices of source increment and mass balance tolerance parameter values. A computer program (IsoSource) to perform these calculations for user-specified data is available at http://www.epa.gov/wed/pages/models.htm.
稳定同位素在环境研究中越来越多地被用作示踪剂。一种应用是利用同位素比率定量确定几种来源对混合物的比例贡献,例如废水中各种污染源的比例。一般来说,通过使用基于质量平衡方程的线性混合模型,n + 1个不同来源的比例贡献可以由n种不同的同位素系统示踪剂(例如δ13C、δ15N、δ18O)唯一确定。然而,潜在来源的数量往往超过n + 1,这使得无法找到源比例的唯一解。在这些情况下该怎么办呢?虽然不存在确定的解决方案,但我们提出了一种方法,该方法对于确定每个来源贡献的界限具有参考价值。在这种方法中,每个来源贡献的所有可能组合(0 - 100%)以小增量(例如1%)进行检查。在小容差范围内(例如±0.1‰)总和等于观测到的混合物同位素特征的组合被视为可行解,从中可以确定潜在来源贡献的频率和范围。为避免错误表述结果,该程序的使用者应报告可行解的分布,而不是关注单个值,如平均值。我们将此方法应用于各种环境研究中,在这些研究中使用稳定同位素示踪剂来量化多个来源的相对大小,包括(1)植物用水,(2)地球化学,(3)空气污染,以及(4)饮食分析。此方法给出了同位素确定的源贡献范围;特定于每个研究的其他非同位素约束可用于进一步限制此范围。同位素确定范围的广度取决于混合空间的几何形状以及源和混合物同位素特征的相似性。敏感性分析表明,估计范围随源增量和质量平衡容差参数值的不同选择仅略有变化。可在http://www.epa.gov/wed/pages/models.htm获取一个计算机程序(IsoSource),用于为用户指定的数据执行这些计算。