Suppr超能文献

Corrected small-sample estimation of the Bayes error.

作者信息

Brun Marcel, Sabbagh David L, Kim Seungchan, Dougherty Edward R

机构信息

Department of Electrical Engineering, Texas A&M University, College Station, TX 77840, USA.

出版信息

Bioinformatics. 2003 May 22;19(8):944-51. doi: 10.1093/bioinformatics/btg144.

Abstract

MOTIVATION

A major problem of pattern classification is estimation of the Bayes error when only small samples are available. One way to estimate the Bayes error is to design a classifier based on some classification rule applied to sample data, estimate the error of the designed classifier, and then use this estimate as an estimate of the Bayes error. Relative to the Bayes error, the expected error of the designed classifier is biased high, and this bias can be severe with small samples.

RESULTS

This paper provides a correction for the bias by subtracting a term derived from the representation of the estimation error. It does so for Boolean classifiers, these being defined on binary features. Although the general theory applies to any Boolean classifier, a model is introduced to reduce the number of parameters. A key point is that the expected correction is conservative. Properties of the corrected estimate are studied via simulation. The correction applies to binary predictors because they are mathematically identical to Boolean classifiers. In this context the correction is adapted to the coefficient of determination, which has been used to measure nonlinear multivariate relations between genes and design genetic regulatory networks. An application using gene-expression data from a microarray experiment is provided on the website http://gspsnap.tamu.edu/smallsample/ (user:'smallsample', password:'smallsample)').

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验