Suppr超能文献

评估酶联免疫吸附测定微阵列实验中的浓度估计误差。

Evaluating concentration estimation errors in ELISA microarray experiments.

作者信息

Daly Don Simone, White Amanda M, Varnum Susan M, Anderson Kevin K, Zangar Richard C

机构信息

Statistical and Mathematical Sciences, Pacific Northwest National Laboratory, PO Box 999, Richland, WA, USA.

出版信息

BMC Bioinformatics. 2005 Jan 26;6:17. doi: 10.1186/1471-2105-6-17.

Abstract

BACKGROUND

Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to estimate a protein's concentration in a sample. Deploying ELISA in a microarray format permits simultaneous estimation of the concentrations of numerous proteins in a small sample. These estimates, however, are uncertain due to processing error and biological variability. Evaluating estimation error is critical to interpreting biological significance and improving the ELISA microarray process. Estimation error evaluation must be automated to realize a reliable high-throughput ELISA microarray system. In this paper, we present a statistical method based on propagation of error to evaluate concentration estimation errors in the ELISA microarray process. Although propagation of error is central to this method and the focus of this paper, it is most effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization, and statistical diagnostics when evaluating ELISA microarray concentration estimation errors.

RESULTS

We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of concentration estimation errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error. We summarize the results with a simple, three-panel diagnostic visualization featuring a scatterplot of the standard data with logistic standard curve and 95% confidence intervals, an annotated histogram of sample measurements, and a plot of the 95% concentration coefficient of variation, or relative error, as a function of concentration.

CONCLUSIONS

This statistical method should be of value in the rapid evaluation and quality control of high-throughput ELISA microarray analyses. Applying propagation of error to a variety of ELISA microarray concentration estimation models is straightforward. Displaying the results in the three-panel layout succinctly summarizes both the standard and sample data while providing an informative critique of applicability of the fitted model, the uncertainty in concentration estimates, and the quality of both the experiment and the ELISA microarray process.

摘要

背景

酶联免疫吸附测定(ELISA)是一种用于估计样品中蛋白质浓度的标准免疫测定方法。以微阵列形式部署ELISA可同时估计小样本中多种蛋白质的浓度。然而,由于处理误差和生物变异性,这些估计值存在不确定性。评估估计误差对于解释生物学意义和改进ELISA微阵列过程至关重要。为了实现可靠的高通量ELISA微阵列系统,估计误差评估必须自动化。在本文中,我们提出了一种基于误差传播的统计方法,用于评估ELISA微阵列过程中的浓度估计误差。虽然误差传播是该方法的核心以及本文的重点,但它只有在有可比数据时才最有效。因此,我们在评估ELISA微阵列浓度估计误差时简要讨论了实验设计、数据筛选、归一化和统计诊断的作用。

结果

我们使用对乳腺癌生物标志物的ELISA微阵列研究来说明浓度估计误差的评估。说明从对设计和所得数据的描述开始,接着是对数据筛选和归一化的简要讨论。在我们的说明中,我们对筛选和归一化后的数据拟合标准曲线,审查建模诊断,并应用误差传播。我们用一个简单的三面板诊断可视化总结结果,该可视化包括带有逻辑标准曲线和95%置信区间的标准数据散点图、样本测量值的带注释直方图,以及作为浓度函数的95%浓度变异系数或相对误差图。

结论

这种统计方法在高通量ELISA微阵列分析的快速评估和质量控制中应该是有价值的。将误差传播应用于各种ELISA微阵列浓度估计模型很简单。以三面板布局显示结果简洁地总结了标准数据和样本数据,同时对拟合模型的适用性、浓度估计的不确定性以及实验和ELISA微阵列过程的质量提供了有益的评判。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a64d/549203/0efc21355ecb/1471-2105-6-17-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验