Yu S S, Li H J, Shih T Y
Biochemistry. 1976 May 18;15(10):2027-34. doi: 10.1021/bi00655a001.
Physical properties of histone-DNA complexes very often depend upon the method of complex formation. In an attempt to make the studies of histone-DNA interactions more relevant to biological systems, results from thermal denaturation of native chromatin were used as references for determining how closely a given histone-DNA complex approaches its native state in chromatin. In the case of arginine-rich histones H3 (III or f3) and H4 (IV or f2a1), four methods were used for making complexes with calf thymus DNA: (A) NaCl gradient dialysis with urea; (B) NaCl gradient dialysis without urea; (C) direct mixing in 2.5 x 10(-4) EDTA, pH 8.0; and (D) direct mixing in 0.01 M sodium phosphate, pH 7.0. It was observed that a complex made by direct mixing in phosphate (method D) is closer to the native than is one made by direct mixing in EDTA (method C) than the one made by gradient dialysis with urea (method A) or without urea (method B). Regardless of the method used for complex formation, no substantial differences were observed between complexes with histone H3 dimer with disulfide bond(s) and a reduced H3 without disulfide bond, implying that perhaps a dimer with or without disulfide bond is a natural fundamental subunit in our experimental conditions. When the method of direct mixing in EDTA is used, the melting properties of the complexes vary only slightly with any one of the following H3 histones: from calf thymus, H3 without disulfide bond, H3 dimer, and H3 oligomer with disulfide bonds, also, from duck erythrocyte, H3 monomer and dimer. The complexes formed between DNA and a mixture of H3 and H4 by method D have melting properties similar to those of native chromatin. Since an equimolar mixture of histone H3 and H4 in 0.01 M phosphate, pH 7.0, was shown to form a tetramer (D'Anna, J.A., and Isenberg, I. (1974), Biochem. Biophys. Res. Commun. 61, 343), our results suggest that, a tetramer of H3 and H4, likely to be (H3)2(H4)2, formed from one H3 dimer and one H4 dimer, can bind DNA in a manner similar to that in native chromatin.
组蛋白 - DNA复合物的物理性质常常取决于复合物形成的方法。为了使组蛋白 - DNA相互作用的研究更贴近生物系统,天然染色质热变性的结果被用作参考,以确定给定的组蛋白 - DNA复合物在多大程度上接近其在染色质中的天然状态。对于富含精氨酸的组蛋白H3(III或f3)和H4(IV或f2a1),使用了四种方法与小牛胸腺DNA形成复合物:(A)含尿素的NaCl梯度透析;(B)不含尿素的NaCl梯度透析;(C)在2.5×10⁻⁴ EDTA(pH 8.0)中直接混合;以及(D)在0.01 M磷酸钠(pH 7.0)中直接混合。观察到,通过在磷酸盐中直接混合制备的复合物(方法D)比在EDTA中直接混合制备的复合物(方法C)更接近天然状态,比用含尿素的梯度透析(方法A)或不含尿素的梯度透析(方法B)制备的复合物更接近天然状态。无论用于形成复合物的方法如何,在具有二硫键的组蛋白H3二聚体和没有二硫键的还原型H3形成的复合物之间未观察到实质性差异,这意味着在我们的实验条件下,有或没有二硫键的二聚体可能是天然的基本亚基。当使用在EDTA中直接混合的方法时,复合物的解链性质仅随以下任何一种H3组蛋白略有变化:从小牛胸腺提取的、没有二硫键的H3、H3二聚体以及具有二硫键的H3寡聚体,同样,来自鸭红细胞的H3单体和二聚体。通过方法D在DNA与H3和H4的混合物之间形成的复合物具有与天然染色质相似的解链性质。由于已证明在0.01 M磷酸盐(pH 7.0)中的组蛋白H3和H4等摩尔混合物形成了四聚体(D'Anna,J.A.和Isenberg,I.(1974年),《生物化学与生物物理研究通讯》61,343),我们的结果表明,由一个H3二聚体和一个H4二聚体形成的H3和H4四聚体,可能是(H3)₂(H4)₂,可以以与天然染色质中相似的方式结合DNA。