Chatterjee Tapan K, Liu Zhengyu, Fisher Rory A
Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
J Biol Chem. 2003 Aug 8;278(32):30261-71. doi: 10.1074/jbc.M212687200. Epub 2003 May 21.
RGS proteins are defined by the presence of a semiconserved RGS domain that confers the GTPase-activating activity of these proteins toward certain G alpha subunits. RGS6 is a member of a subfamily of RGS proteins distinguished by the presence of DEP and GGL domains, the latter a G beta 5-interacting domain. Here we report identification of 36 distinct transcripts of human RGS6 that arise by unusually complex processing of the RGS6 gene, which spans 630 kilobase pairs of genomic DNA in human chromosome 14 and is interrupted by 19 introns. These transcripts arise by use of two alternative transcription sites and complex alternative splicing mechanisms and encode proteins with long or short N-terminal domains, complete or incomplete GGL domains, 7 distinct C-terminal domains and a common internal domain where the RGS domain is found. The role of structural diversity in the N-terminal and GGL domains of RGS6 splice variants in their interaction with G beta 5 and subcellular localization and of G beta 5 on RGS6 protein localization was examined in COS-7 cells expressing various RGS6 splice variant proteins. RGS6 splice variants with complete GGL domains interacted with G beta 5, irrespective of the type of N-terminal domain, while those lacking a complete GGL domain did not. RGS6 protein variants displayed subcellular distribution patterns ranging from an exclusive cytoplasmic to exclusive nuclear/nucleolar localization, and co-expression of G beta 5 promoted nuclear localization of RGS6 proteins. Analysis of our results show that the long N-terminal and GGL domain sequences of RGS6 proteins function as cytoplasmic retention sequences to prevent their nuclear/nucleolar accumulation. These findings provide the first evidence for G beta 5-independent functions of the GGL domain and for a role of G beta 5 in RGS protein localization. This study reveals extraordinary complexity in processing of the human RGS6 gene and provides new insights into how structural diversity in the RGS6 protein family is involved in their localization and likely function(s) in cells.
RGS蛋白是由一个半保守的RGS结构域所定义的,该结构域赋予这些蛋白对某些Gα亚基的GTP酶激活活性。RGS6是RGS蛋白亚家族的成员,其特征在于存在DEP和GGL结构域,后者是一个与Gβ5相互作用的结构域。在此,我们报告了人类RGS6的36种不同转录本的鉴定,这些转录本是由RGS6基因异常复杂的加工产生的,该基因跨越人类14号染色体上630千碱基对的基因组DNA,并被19个内含子打断。这些转录本是通过使用两个可变转录位点和复杂的可变剪接机制产生的,编码的蛋白具有长或短的N端结构域、完整或不完整的GGL结构域、7种不同的C端结构域以及一个包含RGS结构域的共同内部结构域。在表达各种RGS6剪接变体蛋白的COS-7细胞中,研究了RGS6剪接变体的N端和GGL结构域的结构多样性在其与Gβ5相互作用、亚细胞定位以及Gβ5对RGS6蛋白定位方面的作用。具有完整GGL结构域的RGS6剪接变体与Gβ5相互作用,而不论N端结构域的类型如何,而那些缺乏完整GGL结构域的则不与Gβ5相互作用。RGS6蛋白变体表现出从完全细胞质到完全核/核仁定位的亚细胞分布模式,并且Gβ5的共表达促进了RGS6蛋白的核定位。对我们结果的分析表明,RGS6蛋白的长N端和GGL结构域序列作为细胞质保留序列,以防止它们在核/核仁中积累。这些发现为GGL结构域的不依赖Gβ5的功能以及Gβ5在RGS蛋白定位中的作用提供了首个证据。这项研究揭示了人类RGS6基因加工过程中的非凡复杂性,并为RGS6蛋白家族的结构多样性如何参与其在细胞中的定位和可能的功能提供了新的见解。