Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Cell. 2020 Oct 15;183(2):503-521.e19. doi: 10.1016/j.cell.2020.08.052. Epub 2020 Oct 1.
The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles.
G 蛋白信号转导的范围和时间的控制是由 G 蛋白信号转导调节蛋白(RGS)提供的,它使 G 蛋白α亚基(Gα)失活。哺乳动物基因组编码 20 种典型的 RGS 和 16 种 Gα 基因,它们在生理和疾病中起着关键作用。为了了解 RGS 对 Gα 调节的选择性的原则,我们使用活细胞中的实时动力学测量来检查所有典型的人 RGS 蛋白的催化活性及其对整套 Gα 底物的选择性。这些数据揭示了 RGS-Gα 识别的规则,其选择性的结构基础,并为具有特定选择性的 RGS 蛋白的工程设计提供了原理。该研究还通过祖先重建探索了 RGS-Gα 选择性的进化,并展示了 RGS 中的天然存在的非同义变体如何改变信号转导。这些结果为解码信号转导选择性提供了蓝图,并推进了我们对分子识别原理的理解。