Mehl Andrew F, Heskett Luke D, Jain Sumesh S, Demeler Borries
Department of Chemistry, Knox College, Galesburg, Illinois 61401, USA.
Protein Sci. 2003 Jun;12(6):1205-15. doi: 10.1110/ps.0300803.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.
来自大肠杆菌的GrpE热休克蛋白具有同型二聚体结构。二聚体界面包含来自每个单体NH(2)末端的两个长α螺旋(形成一个“尾巴”),它们通向一个小的四螺旋束,每个单体从该四螺旋束中以反平行拓扑排列贡献两个短的连续α螺旋。我们创建了许多不同的GrpE缺失突变体,这些突变体具有二聚体界面的部分区域,以研究二聚化的要求并研究四螺旋束的形成。使用化学交联和分析超速离心技术探测多聚体状态,我们发现仅包含长α螺旋尾部部分的突变体(GrpE1-88)无法形成二聚体,这很可能是由于圆二色光谱法测定的α螺旋含量降低,因此GrpE蛋白具有二聚体结构的一个原因是为了支撑尾部区域。包含两个短α螺旋的突变体(GrpE1-138和GrpE88-197)能够形成二聚体,并推测在二聚体界面形成四螺旋束。这两个突变体的单体-二聚体平衡的平衡常数与全长蛋白非常相似,这表明尾部区域对二聚体的稳定性贡献不大。有趣的是,一个仅包含一个短α螺旋的突变体(GrpE1-112)以四聚体形式存在,推测它正在形成四螺旋束结构。讨论了针对该突变体的一个提议模型及其与影响四螺旋束形成的因素的相关性。