Gelinas Amy D, Langsetmo Knut, Toth Joseph, Bethoney Kelley A, Stafford Walter F, Harrison Celia J
Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA.
J Mol Biol. 2002 Oct 11;323(1):131-42. doi: 10.1016/s0022-2836(02)00915-4.
GrpE is the nucleotide exchange factor for the Escherichia coli molecular chaperone DnaK, the prokaryotic homologue of Hsp70. Thermodynamic properties of GrpE structural domains were characterized by examining a number of structural and point mutants using circular dichroism, differential scanning calorimetry and analytical ultracentrifugation. These structural domains are the long paired N-terminal helices, the central four-helix bundle, and the C-terminal compact beta-domains. We show that the central four-helix bundle (t(m) approximately 75 degrees C) provides a stable platform for the association of the long paired N-terminal helices (t(m) approximately 50 degrees C), which can then function as a temperature sensor. The stability of the N-terminal helices is linked to the presence of the C-terminal compact beta-domains of GrpE, providing a potential mechanism for coupling of DnaK-binding activity of GrpE with temperature. On the basis of our thermodynamic analysis of E.coli GrpE, we present a structure-based model for the melting properties of the nucleotide exchange factor, wherein the long paired helices function as a molecular thermocouple.
GrpE是大肠杆菌分子伴侣DnaK(Hsp70的原核同源物)的核苷酸交换因子。通过使用圆二色性、差示扫描量热法和分析超速离心法研究了许多结构突变体和点突变体,从而表征了GrpE结构域的热力学性质。这些结构域包括长的配对N端螺旋、中央四螺旋束和C端紧密β结构域。我们发现,中央四螺旋束(熔解温度约为75℃)为长的配对N端螺旋(熔解温度约为50℃)的缔合提供了一个稳定的平台,而后一种螺旋可作为温度传感器发挥作用。N端螺旋的稳定性与GrpE的C端紧密β结构域的存在有关,这为GrpE的DnaK结合活性与温度的偶联提供了一种潜在机制。基于我们对大肠杆菌GrpE的热力学分析,我们提出了一种基于结构的核苷酸交换因子熔解特性模型,其中长的配对螺旋起分子热电偶的作用。