Suppr超能文献

Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.

作者信息

Akkus Ozan, Knott David F, Jepsen Karl J, Davy Dwight T, Rimnac Clare M

机构信息

Department of Bioengineering, MS 303, Orthopaedic Bioengineering Laboratory, The University of Toledo, Toledo, Ohio 43606-3390, USA.

出版信息

J Biomed Mater Res A. 2003 Jun 15;65(4):482-8. doi: 10.1002/jbm.a.10567.

Abstract

The accumulation of damage and the associated degradation of the mechanical properties of cortical bone are postulated to contribute to age-, disease-, overuse-, and disuse-related skeletal fragilities. Therefore, gaining insight into the relationship between damage and degradation processes is essential in understanding the etiology of skeletal fractures. In investigating this relationship, the damage measure ideally needs to account for the size, the distribution density, and the orientation of microcracks. Existing measures of damage address the size and distribution density of microcracks; however, the orientation of cracks has not been well-investigated. Because the overall orientation of microcracks determines the material axis along which the greatest degradation will be experienced, we hypothesized that the incorporation of the relative orientation between microcracks and loading direction will improve the significance of the relationship between damage accumulation and material property degradation. A three-cycle damage protocol was used to induce tensile damage and to quantify the degradation of the elastic modulus of specimens from human donor femoral cortical bone (a 24-year-old and a 72-year-old man). Microcracks were evaluated by en bloc basic fuchsin staining of specimens after testing. The length (L(i)) and the orientation with respect to the loading direction (beta(i)) of each crack were quantified by a video microscopy system. Three damage measures were quantified for each specimen: the number of linear microcracks (Cr #), the sum of the crack lengths (SigmaL(i)) accounting for the microcrack size alone, and the sum of the projected crack length [SigmaL(Pi) = SigmaL(i)cos(beta(i))] accounting for both crack size and orientation. Inclusion of the orientation parameter improved the coefficient of determination between damage accumulation and the degradation of the elastic modulus: the coefficient of determination of the sum of the projected crack length (R(2) = 0.239) was 60% greater than that of the sum the projected crack length (R(2) = 0.149) and 33% greater than that of the number of linear microcracks (R(2) = 0.180). We conclude that microcrack orientation is an essential physical variable in the relationship between damage accumulation and degradation of mechanical properties of cortical bone tissue.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验