Suppr超能文献

核糖体的假尿苷及假尿苷合成酶

Pseudouridines and pseudouridine synthases of the ribosome.

作者信息

Ofengand J, Malhotra A, Remme J, Gutgsell N S, Del Campo M, Jean-Charles S, Peil L, Kaya Y

机构信息

Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2001;66:147-59. doi: 10.1101/sqb.2001.66.147.

Abstract

psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes Um2552 in E. coli, makes the 50S subunit less stable at 1 mM Mg++ (Bügl et al. 2000) and inhibits subunit joining (Caldas et al. 2000), but, in this case, it is not yet known whether the effects are due to the lack of 2'-O-methylation or to the absence of the enzyme itself. Is there any role for the psi residues themselves? First, as noted above, the 3 psi made by RluD which cluster in the end-loop of helix 69 are highly conserved, with one being universal (Fig. 2B). In the 70S-tRNA structure (Yusupov et al. 2001), the loop of this helix containing the psi supports the anticodon arm of A-site tRNA near its juncture with the amino acid arm. The middle of helix 69 does the same thing for P-site tRNA. Unfortunately, the resolution is not yet sufficient to provide a more precise alignment of the psi residues with the other structural elements of the tRNA-ribosome complex so that one cannot yet determine what role, if any, is played by the N-1 H that distinguishes psi from U. Second, and more generally, some psi residues in the LSU appear to be near the site of peptide-bond formation or tRNA binding but not actually at it (Fig. 2B) (Nissen et al. 2000; Yusupov et al. 2001). For example, position 2492 is commonly psi and is only six residues away from A2486, the A postulated to catalyze peptide-bond formation. Position 2589 is psi in all the eukaryotes and is next to 2588, which base-pairs with the C75 of A-site tRNA. Residue 2620, which interacts with the A76 of A-site-bound tRNA, is a psi or is next to a psi in eukaryotes and Archaea, and is five residues away from psi 2580 in E. coli. A2637, which is between the two CCA ends of P- and A-site tRNA, is near psi 2639, psi 2640, and psi 2641, found in a number of organisms. Residue 2529, which contacts the backbone of A-site tRNA residues 74-76, is near psi 2527 psi 2528 in H. marismortui. Residues 2505-2507, which contact A-site tRNA residues 50-53, are near psi 2509 in higher eukaryotes, and residues 2517-2519 in contact with A-site tRNA residues 64-65 are within 1-3 nucleotides of psi 2520 in higher eukaryotes and psi 2514 in H. marismortui. A way to rationalize this might be to invoke the concept suggested in the Introduction that psi acts as a molecular glue to hold loose elements in a more rigid configuration. It may well be that this is more important near the site of peptide-bond formation and tRNA binding, accounting for the preponderance of psi in this vicinity. What might be the role of all the other psi in eukaryotes? One can only surmise that cells, having once acquired the ability to make psi with guide RNAs, took advantage of the system to inexpensively place psi wherever an undesirable loose region was found. It might be that in some of these cases, psi performs the role played by proteins in other regions, namely that of holding the rRNA in its proper configuration. Confirmation of this hypothesis will have to await structural determination of eukaryotic ribosomes.

摘要

假尿苷(ψ)在核糖体RNA中普遍存在。真细菌、古细菌和真核生物都含有ψ,尽管其数量差异很大,真核生物中的ψ数量最多。在一些生物体中,小核糖体亚基显然可以没有ψ,尽管其他生物体中ψ的数量多达40个或更多。大核糖体亚基似乎至少需要一个ψ,但最多可有50 - 60个。在真细菌中,ψ由一组位点特异性酶合成,而在真核生物中,ψ由一种与辅助蛋白和赋予特异性的引导RNA复合的单一酶合成。古细菌中的合成机制尚不清楚,但基于对已测序古细菌基因组中发现的ψ合成酶种类的分析,可能涉及引导RNA的使用。所有的ψ合成酶都可以分为四个相关组之一,几乎所有这些组在一个保守的序列基序中都有一个保守的天冬氨酸残基。到目前为止,在所有检测的12种合成酶中,天冬氨酸对于ψ的形成至关重要。当检测大肠杆菌中对ψ的需求时,在正常条件下,唯一一种缺失会导致生长速率大幅下降的合成酶是RluD,即负责在螺旋69末端环中形成ψ1911、ψ1915和ψ1917的合成酶。这种生长缺陷是大核糖体亚基组装严重失败的结果。通过反式提供rluD结构基因,以及提供一个产生无法形成ψ的合成酶的点突变基因,可以预防这种缺陷。因此,RluD合成酶蛋白似乎直接参与50S亚基的组装,可能作为一种RNA伴侣,并且这种活性与其形成ψ的能力无关。这个结果并非没有先例。酵母线粒体中对G2251(大肠杆菌编号)具有特异性的2'-O-甲基转移酶PET56的缺失几乎阻断了50S亚基的组装和线粒体功能(Sirum-Connolly等人,1995年),但该酶的甲基化活性并非必需(T. Mason,个人交流)。大肠杆菌中负责形成Um2552的热休克蛋白FtsJ的缺失,使得50S亚基在1 mM Mg++ 时稳定性降低(Bügl等人,2000年)并抑制亚基结合(Caldas等人,2000年),但在这种情况下,尚不清楚这些影响是由于缺乏2'-O-甲基化还是由于酶本身的缺失。ψ残基本身有什么作用吗?首先,如上所述,由RluD形成的聚集在螺旋69末端环中的3个ψ高度保守,其中一个是普遍存在的(图2B)。在70S - tRNA结构(Yusupov等人,2001年)中,这个包含ψ的螺旋环在其与氨基酸臂的连接处附近支撑着A位点tRNA的反密码子臂。螺旋69的中部对P位点tRNA也起到同样的作用。不幸的是,分辨率还不足以提供ψ残基与tRNA - 核糖体复合物的其他结构元件更精确的比对,因此尚无法确定将ψ与U区分开来的N - 1 H起了什么作用(如果有作用的话)。其次,更普遍地说,大亚基中的一些ψ残基似乎靠近肽键形成或tRNA结合的位点,但实际上并不在该位点(图2B)(Nissen等人,2000年;Yusupov等人,2001年)。例如,位置2492通常是ψ,与推测催化肽键形成的A2486仅相隔6个残基。位置2589在所有真核生物中都是ψ,紧邻2588,后者与A位点tRNA的C75碱基配对。与A位点结合的tRNA的A76相互作用的残基2620在真核生物和古细菌中是ψ或者紧邻一个ψ,并且与大肠杆菌中的ψ2580相隔5个残基。位于P位点和A位点tRNA的两个CCA末端之间的A2637,靠近在许多生物体中发现的ψ2639、ψ2640和ψ2641。与A位点tRNA残基74 - 76的主链接触的残基2529,在嗜盐栖热菌中靠近ψ2527和ψ2528。与A位点tRNA残基50 - 53接触的残基2505 - 2507,在高等真核生物中靠近ψ2509,与A位点tRNA残基64 - 65接触的残基2517 - 2519在高等真核生物中距离ψ2520 1 - 3个核苷酸,在嗜盐栖热菌中距离ψ2514 1 - 3个核苷酸。一种解释这一现象的方法可能是援引引言中提出的概念,即ψ作为一种分子胶水,将松散的元件固定在更刚性的构型中。很可能在肽键形成和tRNA结合位点附近这一点更为重要,这解释了该区域ψ的优势。真核生物中所有其他的ψ可能起什么作用呢?人们只能推测,细胞一旦获得了利用引导RNA制造ψ的能力,就利用这个系统在发现任何不希望出现的松散区域的地方廉价地放置ψ。在某些情况下,ψ可能执行了蛋白质在其他区域所起的作用,即保持rRNA处于其正确的构型。对这一假设的证实还有待真核核糖体的结构测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验