Suppr超能文献

tRNA修饰酶介导的底物特异性的进化

The Evolution of Substrate Specificity by tRNA Modification Enzymes.

作者信息

McKenney Katherine M, Rubio Mary Anne T, Alfonzo Juan D

机构信息

Department of Microbiology, Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States.

Department of Microbiology, Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States.

出版信息

Enzymes. 2017;41:51-88. doi: 10.1016/bs.enz.2017.03.002. Epub 2017 Apr 26.

Abstract

All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.

摘要

细胞中的所有类型核酸都会经历自然发生的化学修饰,包括DNA、rRNA、mRNA、snRNA,其中最显著的是tRNA。已描述了100多种不同的修饰,嘌呤和嘧啶碱基的每个位置都可以被修饰;糖通常也会被修饰[1]。在tRNA中,修饰的功能各不相同;有些修饰调节全局和/或局部RNA结构,其他修饰则直接影响解码,可能对细胞存活至关重要。无论哪种情况,修饰的总体重要性都体现在其进化保守性以及生物体使用其基因组的很大一部分来编码修饰酶这一事实上,这远远超过了从头合成标准核苷酸本身所需的量[2]。尽管在来自生命三个域的tRNA中,有些修饰发生在完全相同的核苷酸位置,但许多修饰可以在特定tRNA的不同位置找到,并且它们的位置在不同tRNA之间以及同一tRNA内部可能会有所不同。面对这种化学多样性和底物特异性的广泛组合,tRNA修饰领域的一大挑战是在分子水平上更好地理解不同修饰酶识别底物的模式;在这个领域中,RNA结合是问题的核心。本章将重点介绍几个修饰酶的例子,这些酶的RNA结合模式已得到很好的理解;从这些例子中,我们将尝试得出一般性结论,并突出可能适用于整个RNA修饰领域的新趋势。

相似文献

1
The Evolution of Substrate Specificity by tRNA Modification Enzymes.
Enzymes. 2017;41:51-88. doi: 10.1016/bs.enz.2017.03.002. Epub 2017 Apr 26.
2
m1A Post-Transcriptional Modification in tRNAs.
Biomolecules. 2017 Feb 21;7(1):20. doi: 10.3390/biom7010020.
3
Partially modified tRNAs for the study of tRNA maturation and function.
Methods Enzymol. 2021;658:225-250. doi: 10.1016/bs.mie.2021.06.007. Epub 2021 Jul 14.
4
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
J Bacteriol. 2019 Apr 9;201(9). doi: 10.1128/JB.00690-18. Print 2019 May 1.
5
Impact of tRNA Modifications and tRNA-Modifying Enzymes on Proteostasis and Human Disease.
Int J Mol Sci. 2018 Nov 24;19(12):3738. doi: 10.3390/ijms19123738.
6
A rationale for tRNA modification circuits in the anticodon loop.
RNA. 2018 Oct;24(10):1277-1284. doi: 10.1261/rna.067736.118. Epub 2018 Jul 19.
9
Sequence specificity of tRNA-modifying enzymes. An analysis of 258 tRNA sequences.
Biochim Biophys Acta. 1983 Nov 17;741(2):180-96. doi: 10.1016/0167-4781(83)90058-1.
10
Do all modifications benefit all tRNAs?
FEBS Lett. 2010 Jan 21;584(2):265-71. doi: 10.1016/j.febslet.2009.11.049.

引用本文的文献

1
Transcriptional Dynamics of Tomato Plants Under Combined Heat and Salt Stress.
Physiol Plant. 2025 Sep-Oct;177(5):e70501. doi: 10.1111/ppl.70501.
2
Determining the effects of pseudouridine incorporation on human tRNAs.
EMBO J. 2025 Apr 29. doi: 10.1038/s44318-025-00443-y.
3
Distal Domains of the Bacterial-Exclusive Wobble-Modifying Enzyme TilS Contribute to Catalysis.
ACS Omega. 2025 Mar 14;10(11):11618-11626. doi: 10.1021/acsomega.5c00897. eCollection 2025 Mar 25.
4
Adenosine-to-inosine RNA editing in cancer: molecular mechanisms and downstream targets.
Protein Cell. 2025 Jun 20;16(6):391-417. doi: 10.1093/procel/pwae039.
5
The Wild-Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequence-Specific DNA Base Editing.
Chembiochem. 2023 Aug 15;24(16):e202200788. doi: 10.1002/cbic.202200788. Epub 2023 May 24.
7
RNA Methylation in Systemic Lupus Erythematosus.
Front Cell Dev Biol. 2021 Jul 7;9:696559. doi: 10.3389/fcell.2021.696559. eCollection 2021.
8
Expression and analysis of the SAM-dependent RNA methyltransferase Rsm22 from Saccharomyces cerevisiae.
Acta Crystallogr D Struct Biol. 2021 Jun 1;77(Pt 6):840-853. doi: 10.1107/S2059798321004149. Epub 2021 May 19.
9
Inosine in Biology and Disease.
Genes (Basel). 2021 Apr 19;12(4):600. doi: 10.3390/genes12040600.

本文引用的文献

1
Molecular biology: RNA editing packs a one-two punch.
Nature. 2017 Feb 22;542(7642):420-421. doi: 10.1038/542420a.
2
Editing and methylation at a single site by functionally interdependent activities.
Nature. 2017 Feb 22;542(7642):494-497. doi: 10.1038/nature21396.
3
A Novel Motif for S-Adenosyl-l-methionine Binding by the Ribosomal RNA Methyltransferase TlyA from Mycobacterium tuberculosis.
J Biol Chem. 2017 Feb 3;292(5):1977-1987. doi: 10.1074/jbc.M116.752659. Epub 2016 Dec 27.
5
The Pseudouridine Synthases Proceed through a Glycal Intermediate.
J Am Chem Soc. 2016 Jun 29;138(25):7852-5. doi: 10.1021/jacs.6b04491. Epub 2016 Jun 17.
6
From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications.
Life (Basel). 2016 Mar 14;6(1):13. doi: 10.3390/life6010013.
7
The tRNA Elbow in Structure, Recognition and Evolution.
Life (Basel). 2016 Jan 12;6(1):3. doi: 10.3390/life6010003.
8
Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue.
Nucleic Acids Res. 2016 Jan 29;44(2):940-53. doi: 10.1093/nar/gkv1369. Epub 2015 Dec 15.
9
tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry.
RNA Biol. 2016;13(2):145-51. doi: 10.1080/15476286.2015.1112488. Epub 2015 Nov 23.
10
tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily.
Nucleic Acids Res. 2015 Sep 3;43(15):7489-503. doi: 10.1093/nar/gkv745. Epub 2015 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验