Gönen Mithat, Westfall Peter H, Johnson Wesley
Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
Biometrics. 2003 Mar;59(1):76-82. doi: 10.1111/1541-0420.00009.
In clinical studies involving multiple variables, simultaneous tests are often considered where both the outcomes and hypotheses are correlated. This article proposes a multivariate mixture prior on treatment effects, that allows positive probability of zero effect for each hypothesis, correlations among effect sizes, correlations among binary outcomes of zero versus nonzero effect, and correlations among the observed test statistics (conditional on the effects). We develop a Bayesian multiple testing procedure, for the multivariate two-sample situation with unknown covariance structure, and obtain the posterior probabilities of no difference between treatment regimens for specific variables. Prior selection methods and robustness issues are discussed in the context of a clinical example.
在涉及多个变量的临床研究中,通常会考虑同时进行检验,此时结果和假设都是相关的。本文提出了一种关于治疗效果的多元混合先验,它允许每个假设的零效应具有正概率、效应大小之间的相关性、零效应与非零效应的二元结果之间的相关性以及观察到的检验统计量之间的相关性(以效应为条件)。我们针对协方差结构未知的多元两样本情况开发了一种贝叶斯多重检验程序,并获得了特定变量治疗方案之间无差异的后验概率。在一个临床实例的背景下讨论了先验选择方法和稳健性问题。