Dunson David B, Chen Zhen
Biostatistics Branch, National Institute of Environmental Health Sciences, MD A3-03, P.O. Box 12233, Research Triangle Park, North Carolina 27709, USA.
Biometrics. 2004 Jun;60(2):352-8. doi: 10.1111/j.0006-341X.2004.00179.x.
In multivariate survival analysis, investigators are often interested in testing for heterogeneity among clusters, both overall and within specific classes. We represent different hypotheses about the heterogeneity structure using a sequence of gamma frailty models, ranging from a null model with no random effects to a full model having random effects for each class. Following a Bayesian approach, we define prior distributions for the frailty variances consisting of mixtures of point masses at zero and inverse-gamma densities. Since frailties with zero variance effectively drop out of the model, this prior allocates probability to each model in the sequence, including the overall null hypothesis of homogeneity. Using a counting process formulation, the conditional posterior distributions of the frailties and proportional hazards regression coefficients have simple forms. Posterior computation proceeds via a data augmentation Gibbs sampling algorithm, a single run of which can be used to obtain model-averaged estimates of the population parameters and posterior model probabilities for testing hypotheses about the heterogeneity structure. The methods are illustrated using data from a lung cancer trial.
在多变量生存分析中,研究人员通常有兴趣检验聚类之间的异质性,包括总体异质性和特定类别内的异质性。我们使用一系列伽马脆弱模型来表示关于异质性结构的不同假设,范围从没有随机效应的零模型到对每个类别都有随机效应的完整模型。遵循贝叶斯方法,我们为脆弱方差定义先验分布,该分布由零处的点质量和逆伽马密度的混合组成。由于方差为零的脆弱性实际上从模型中剔除,这种先验为序列中的每个模型分配概率,包括同质性的总体零假设。使用计数过程公式,脆弱性和比例风险回归系数的条件后验分布具有简单形式。后验计算通过数据增强吉布斯采样算法进行,单次运行该算法可用于获得总体参数的模型平均估计以及用于检验关于异质性结构假设的后验模型概率。使用来自肺癌试验的数据对这些方法进行了说明。