Suppr超能文献

一氧化氮对心肌收缩力和钙循环的调节:神经元型和内皮型一氧化氮合酶的独立作用

Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases.

作者信息

Khan Shakil A, Skaf Michel W, Harrison Robert W, Lee Kwangho, Minhas Khalid M, Kumar Anil, Fradley Mike, Shoukas Artin A, Berkowitz Dan E, Hare Joshua M

机构信息

Department of Medicine, The Johns Hopkins Medical Institution, Baltimore, Md, USA.

出版信息

Circ Res. 2003 Jun 27;92(12):1322-9. doi: 10.1161/01.RES.0000078171.52542.9E. Epub 2003 May 22.

Abstract

The mechanisms by which nitric oxide (NO) influences myocardial Ca2+ cycling remain controversial. Because NO synthases (NOS) have specific spatial localization in cardiac myocytes, we hypothesized that neuronal NOS (NOS1) found in cardiac sarcoplasmic reticulum (SR) preferentially regulates SR Ca2+ release and reuptake resulting in potentiation of the cardiac force-frequency response (FFR). Transesophageal pacing (660 to 840 bpm) in intact C57Bl/6 mice (WT) stimulated both contractility (dP/dtmax normalized to end-diastolic volume; dP/dt-EDV) by 51+/-5% (P<0.001) and lusitropy (tau; tau) by 20.3+/-2.0% (P<0.05). These responses were markedly attenuated in mice lacking NOS1 (NOS1-/-) (15+/-2% increase in dP/dt-EDV; P<0.001 versus WT; and no change in tau; P<0.01 versus WT). Isolated myocytes from NOS1-/- (approximately 2 months of age) also exhibited suppressed frequency-dependent sarcomere shortening and Ca2+ transients ([Ca2+]i) compared with WT. SR Ca2+ stores, a primary determinant of the FFR, increased at higher frequencies in WT (caffeine-induced [Ca2+]i at 4 Hz increased 107+/-23% above 1 Hz response) but not in NOS1-/- (13+/-26%; P<0.01 versus WT). In contrast, mice lacking NOS3 (NOS3-/-) had preserved FFR in vivo, as well as in isolated myocytes with parallel increases in sarcomere shortening, [Ca2+]i, and SR Ca2+ stores. NOS1-/- had increased SR Ca2+ ATPase and decreased phospholamban protein abundance, suggesting compensatory increases in SR reuptake mechanisms. Together these data demonstrate that NOS1 selectively regulates the cardiac FFR via influences over SR Ca2+ cycling. Thus, there is NOS isoform-specific regulation of different facets of rate-dependent excitation-contraction coupling; inactivation of NOS1 has the potential to contribute to the pathophysiology of states characterized by diminished frequency-dependent inotropic responses.

摘要

一氧化氮(NO)影响心肌Ca2+循环的机制仍存在争议。由于一氧化氮合酶(NOS)在心肌细胞中具有特定的空间定位,我们推测在心肌肌浆网(SR)中发现的神经元型NOS(NOS1)优先调节SR Ca2+的释放和再摄取,从而增强心脏力-频率反应(FFR)。在完整的C57Bl/6小鼠(野生型,WT)中进行经食管起搏(660至840次/分钟),可使收缩力(以舒张末期容积归一化的dP/dtmax;dP/dt-EDV)增加51±5%(P<0.001),舒张功能(tau;tau)增加20.3±2.0%(P<0.05)。在缺乏NOS1的小鼠(NOS1-/-)中,这些反应明显减弱(dP/dt-EDV增加15±2%;与WT相比,P<0.001;tau无变化;与WT相比,P<0.01)。与野生型相比,来自NOS1-/-(约2月龄)的分离心肌细胞也表现出频率依赖性肌节缩短和Ca2+瞬变([Ca2+]i)受到抑制。SR Ca2+储存是FFR的主要决定因素,在野生型小鼠中,较高频率时其增加(4 Hz时咖啡因诱导的[Ca2+]i比1 Hz反应增加107±23%),但在NOS1-/-小鼠中未增加(13±26%;与WT相比,P<0.01)。相反,缺乏NOS3的小鼠(NOS3-/-)在体内以及分离的心肌细胞中保留了FFR,同时肌节缩短、[Ca2+]i和SR Ca2+储存平行增加。NOS1-/-小鼠的SR Ca2+ ATP酶增加,受磷蛋白丰度降低,提示SR再摄取机制存在代偿性增加。这些数据共同表明,NOS1通过影响SR Ca2+循环选择性地调节心脏FFR。因此,存在NOS同工型对速率依赖性兴奋-收缩偶联不同方面的特异性调节;NOS1失活可能导致频率依赖性变力反应减弱状态的病理生理学改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验