Khan Shakil A, Skaf Michel W, Harrison Robert W, Lee Kwangho, Minhas Khalid M, Kumar Anil, Fradley Mike, Shoukas Artin A, Berkowitz Dan E, Hare Joshua M
Department of Medicine, The Johns Hopkins Medical Institution, Baltimore, Md, USA.
Circ Res. 2003 Jun 27;92(12):1322-9. doi: 10.1161/01.RES.0000078171.52542.9E. Epub 2003 May 22.
The mechanisms by which nitric oxide (NO) influences myocardial Ca2+ cycling remain controversial. Because NO synthases (NOS) have specific spatial localization in cardiac myocytes, we hypothesized that neuronal NOS (NOS1) found in cardiac sarcoplasmic reticulum (SR) preferentially regulates SR Ca2+ release and reuptake resulting in potentiation of the cardiac force-frequency response (FFR). Transesophageal pacing (660 to 840 bpm) in intact C57Bl/6 mice (WT) stimulated both contractility (dP/dtmax normalized to end-diastolic volume; dP/dt-EDV) by 51+/-5% (P<0.001) and lusitropy (tau; tau) by 20.3+/-2.0% (P<0.05). These responses were markedly attenuated in mice lacking NOS1 (NOS1-/-) (15+/-2% increase in dP/dt-EDV; P<0.001 versus WT; and no change in tau; P<0.01 versus WT). Isolated myocytes from NOS1-/- (approximately 2 months of age) also exhibited suppressed frequency-dependent sarcomere shortening and Ca2+ transients ([Ca2+]i) compared with WT. SR Ca2+ stores, a primary determinant of the FFR, increased at higher frequencies in WT (caffeine-induced [Ca2+]i at 4 Hz increased 107+/-23% above 1 Hz response) but not in NOS1-/- (13+/-26%; P<0.01 versus WT). In contrast, mice lacking NOS3 (NOS3-/-) had preserved FFR in vivo, as well as in isolated myocytes with parallel increases in sarcomere shortening, [Ca2+]i, and SR Ca2+ stores. NOS1-/- had increased SR Ca2+ ATPase and decreased phospholamban protein abundance, suggesting compensatory increases in SR reuptake mechanisms. Together these data demonstrate that NOS1 selectively regulates the cardiac FFR via influences over SR Ca2+ cycling. Thus, there is NOS isoform-specific regulation of different facets of rate-dependent excitation-contraction coupling; inactivation of NOS1 has the potential to contribute to the pathophysiology of states characterized by diminished frequency-dependent inotropic responses.
一氧化氮(NO)影响心肌Ca2+循环的机制仍存在争议。由于一氧化氮合酶(NOS)在心肌细胞中具有特定的空间定位,我们推测在心肌肌浆网(SR)中发现的神经元型NOS(NOS1)优先调节SR Ca2+的释放和再摄取,从而增强心脏力-频率反应(FFR)。在完整的C57Bl/6小鼠(野生型,WT)中进行经食管起搏(660至840次/分钟),可使收缩力(以舒张末期容积归一化的dP/dtmax;dP/dt-EDV)增加51±5%(P<0.001),舒张功能(tau;tau)增加20.3±2.0%(P<0.05)。在缺乏NOS1的小鼠(NOS1-/-)中,这些反应明显减弱(dP/dt-EDV增加15±2%;与WT相比,P<0.001;tau无变化;与WT相比,P<0.01)。与野生型相比,来自NOS1-/-(约2月龄)的分离心肌细胞也表现出频率依赖性肌节缩短和Ca2+瞬变([Ca2+]i)受到抑制。SR Ca2+储存是FFR的主要决定因素,在野生型小鼠中,较高频率时其增加(4 Hz时咖啡因诱导的[Ca2+]i比1 Hz反应增加107±23%),但在NOS1-/-小鼠中未增加(13±26%;与WT相比,P<0.01)。相反,缺乏NOS3的小鼠(NOS3-/-)在体内以及分离的心肌细胞中保留了FFR,同时肌节缩短、[Ca2+]i和SR Ca2+储存平行增加。NOS1-/-小鼠的SR Ca2+ ATP酶增加,受磷蛋白丰度降低,提示SR再摄取机制存在代偿性增加。这些数据共同表明,NOS1通过影响SR Ca2+循环选择性地调节心脏FFR。因此,存在NOS同工型对速率依赖性兴奋-收缩偶联不同方面的特异性调节;NOS1失活可能导致频率依赖性变力反应减弱状态的病理生理学改变。
Antioxidants (Basel). 2024-11-20
Physiol Rep. 2022-7
Front Cardiovasc Med. 2020-12-14