Sears Claire E, Bryant Simon M, Ashley Euan A, Lygate Craig A, Rakovic Stevan, Wallis Helen L, Neubauer Stefan, Terrar Derek A, Casadei B
Department of Cardiovascular Medicine, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
Circ Res. 2003 Mar 21;92(5):e52-9. doi: 10.1161/01.RES.0000064585.95749.6D. Epub 2003 Mar 6.
A neuronal isoform of nitric oxide synthase (nNOS) has recently been located to the cardiac sarcoplasmic reticulum (SR). Subcellular localization of a constitutive NOS in the proximity of an activating source of Ca2+ suggests that cardiac nNOS-derived NO may regulate contraction by exerting a highly specific and localized action on ion channels/transporters involved in Ca2+ cycling. To test this hypothesis, we have investigated myocardial Ca2+ handling and contractility in nNOS knockout mice (nNOS-/-) and in control mice (C) after acute nNOS inhibition with 100 micromol/L L-VNIO. nNOS gene disruption or L-VNIO increased basal contraction both in left ventricular (LV) myocytes (steady-state cell shortening 10.3+/-0.6% in nNOS-/- versus 8.1+/-0.5% in C; P<0.05) and in vivo (LV ejection fraction 53.5+/-2.7 in nNOS-/- versus 44.9+/-1.5% in C; P<0.05). nNOS disruption increased ICa density (in pA/pF, at 0 mV, -11.4+/-0.5 in nNOS-/- versus -9.1+/-0.5 in C; P<0.05) and prolonged the slow time constant of inactivation of ICa by 38% (P<0.05), leading to an increased Ca2+ influx and a greater SR load in nNOS-/- myocytes (in pC/pF, 0.78+/-0.04 in nNOS-/- versus 0.64+/-0.03 in C; P<0.05). Consistent with these data, [Ca2+]i transient (indo-1) peak amplitude was greater in nNOS-/- myocytes (410/495 ratio 0.34+/-0.01 in nNOS-/- versus 0.31+/-0.01 in C; P<0.05). These findings have uncovered a novel mechanism by which intracellular Ca2+ is regulated in LV myocytes and indicate that nNOS is an important determinant of basal contractility in the mammalian myocardium. The full text of this article is available at http://www.circresaha.org.
一氧化氮合酶(nNOS)的一种神经元亚型最近被定位到心脏肌浆网(SR)。一种组成型一氧化氮合酶在钙离子激活源附近的亚细胞定位表明,心脏中nNOS衍生的一氧化氮可能通过对参与钙离子循环的离子通道/转运体施加高度特异性和局部性的作用来调节收缩。为了验证这一假设,我们在用100微摩尔/升L - VNIO急性抑制nNOS后,研究了nNOS基因敲除小鼠(nNOS - / - )和对照小鼠(C)的心肌钙离子处理和收缩性。nNOS基因缺失或L - VNIO增加了左心室(LV)心肌细胞的基础收缩(nNOS - / - 中稳态细胞缩短为10.3±0.6%,而C组为8.1±0.5%;P<0.05)以及体内的基础收缩(nNOS - / - 中LV射血分数为53.5±2.7,而C组为44.9±1.5%;P<0.05)。nNOS缺失增加了L型钙电流(ICa)密度(在0 mV时,以pA/pF计,nNOS - / - 中为 - 11.4±0.5,而C组为 - 9.1±0.5;P<0.05),并使ICa失活的慢时间常数延长了38%(P<0.05),导致nNOS - / - 心肌细胞中钙离子内流增加和肌浆网负荷更大(以pC/pF计,nNOS - / - 中为0.78±0.04,而C组为0.64±0.03;P<0.05)。与这些数据一致,nNOS - / - 心肌细胞中[Ca2 + ]i瞬变(indo - 1)峰值幅度更大(nNOS - / - 中410/495比率为0.34±0.01,而C组为0.31±0.01;P<0.05)。这些发现揭示了一种在LV心肌细胞中调节细胞内钙离子的新机制,并表明nNOS是哺乳动物心肌基础收缩性的重要决定因素。本文全文可在http://www.circresaha.org获取。