Xing Li, Glen Robert C, Clark Robert D
Tripos, Inc., 1699 S. Hanley Road, St. Louis, Missouri 63144, USA.
J Chem Inf Comput Sci. 2003 May-Jun;43(3):870-9. doi: 10.1021/ci020386s.
This is the second phase of the pK(a) predictor published earlier (J. Chem. Inf. Comput. Sci. 2002, 42, 796-805). The algorithm has been extended by treating specific chemical classes separately and generating tree-structured molecular descriptors tailored to each individual class. A training set consisting of 625 acids and 412 bases covers the major areas of chemical space involved in protonation and deprotonation. The models obtained demonstrate excellent statistics (SE = 0.41 for acids and 0.30 for bases) and yielded accurate predictions on an external test set. The quality and statistical performance of pK(a) prediction has been improved considerably over the initial implementation of the method.
这是先前发表的pK(a)预测器的第二阶段(《化学信息与计算机科学杂志》,2002年,第42卷,第796 - 805页)。该算法通过分别处理特定化学类别并生成针对每个类别量身定制的树状结构分子描述符进行了扩展。一个由625种酸和412种碱组成的训练集涵盖了质子化和去质子化所涉及的化学空间的主要领域。所获得的模型显示出优异的统计数据(酸的标准误差SE = 0.41,碱的标准误差SE = 0.30),并在外部测试集上做出了准确的预测。与该方法的初始实现相比,pK(a)预测的质量和统计性能有了显著提高。