Ait-Haddou Rachid, Herzog Walter
Human Performance Laboratory, University of Calgary, Calgary, Alberta T2N 1N4 Canada.
Cell Biochem Biophys. 2003;38(2):191-214. doi: 10.1385/CBB:38:2:191.
Brownian ratchet theory refers to the phenomenon that nonequilibrium fluctuations in an isothermal medium and anisotropic system can induce mechanical force and motion. This concept of noise-induced transport has motivated an abundance of theoretical and applied research. One of the exciting applications of the ratchet theory lies in the possible explanation of the operating mode of biological molecular motors. Biomolecular motors are proteins able of converting chemical energy into mechanical motion and force. Because of their dimension, the many small parts that make up molecular motors must operate at energies only a few times greater than those of the thermal baths. The description of molecular motors must be stochastic in nature. Here, we review the theoretical concepts of the Brownian ratchet theory and its possible link to the operation of biomolecular motors. We illustrate the principle of the ratchet theory with models of two molecular motors: a rotary motor (F0F1ATP synthase) and a linear motor (myosin II).
布朗棘轮理论指的是等温介质和各向异性系统中的非平衡涨落能够诱导机械力和运动的现象。这种噪声诱导输运的概念激发了大量的理论和应用研究。棘轮理论的一个令人兴奋的应用在于其可能对生物分子马达工作模式的解释。生物分子马达是能够将化学能转化为机械运动和力的蛋白质。由于其尺寸,构成分子马达的许多小部件必须在仅比热浴能量大几倍的能量下运行。分子马达的描述本质上必须是随机的。在此,我们回顾布朗棘轮理论的理论概念及其与生物分子马达运行的可能联系。我们用两种分子马达的模型来说明棘轮理论的原理:一种旋转马达(F0F1ATP合酶)和一种线性马达(肌球蛋白II)。